
Advanced Design System 2002

Netlist Exporter Setup

February 2002

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available
upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)
and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 2002, Agilent Technologies. All Rights Reserved.

Acknowledgments

Cadence® and Analog Artist® are registered trademarks of Cadence Design Systems
Incorporated.
Design Framework II™ and Composer™ are trademarks of Cadence Design Systems
Incorporated.
Copyright © 2001 Cadence Design Systems Incorporated. All rights reserved.

Mentor Graphics® is a registered trademark of Mentor Graphics Corporation.

Copyright © 1997-2001 Mentor Graphics Incorporated. All rights reserved.
ii

Contents
1 Setup

License Requirements.. 1-1
Installing Netlist Exporter.. 1-1
Configuration File Settings ... 1-3
Design Tool Support ... 1-7
Front End Flow Directory Structure .. 1-7
Adding Tools to Front End Flow.. 1-9

The Need for Adding Tools ... 1-9
Adding a Tool.. 1-9

2 Configuration Files
Configuration Files Used with Front End Flow.. 2-1
Configuration File Locations ... 2-1

de_sim.cfg .. 2-1
CNEX.cfg.. 2-2
<tool>.cfg.. 2-2
CNEX_config.<tool>... 2-2

Configuration File Descriptions... 2-3
de_sim.cfg .. 2-3
CNEX.cfg file .. 2-3

Tool Configuration Files .. 2-7
CNEX_config Configuration File... 2-7

3 Component Definitions
Component Definition Files .. 3-1

Component Definition File Variables .. 3-1
Component Definition File Editing .. 3-5

Component Definition File Setup with the GUI ... 3-5
Component Definition Editor Procedure... 3-9

4 Customizing a Netlister
Setting Up Automatically Included Files ... 4-1

The Include File Path.. 4-1
Adding Value Mapping Functions ... 4-2

Function Prototype and Example ... 4-3
Adding the New Netlist Function .. 4-4
Placing the Type Mapping Function.. 4-4
Validating a Type Mapping Function... 4-5

Adding New Netlist Exporting Functions .. 4-6
Function Prototype and Example ... 4-7
Using the New Netlist Function .. 4-7
iii

Placing a New Netlist Exporting Function .. 4-8
Overriding Existing Front End Flow API Functions... 4-8

Function Prototype ... 4-9
Subclassing a Function Definition .. 4-10

5 Setting up GUI Options
Option List Global Variable ... 5-1

Option List Global Variable for Dracula... 5-2
Overriding the cnexNetlistDialogOptions_cb Function ... 5-3

Function Prototype ... 5-4
Creating a Dialog Box... 5-5
Creating Dialog Box Elements.. 5-6
Adding Callback Functions to Dialog Elements.. 5-8
Displaying the Dialog.. 5-10
Closing the Dialog .. 5-10

Saving Options to a Configuration File ... 5-11
Getting the Values of the Dialog Box Elements.. 5-11
Writing a Value to a Configuration File ... 5-13

Summary .. 5-14

6 Hspice Netlister Example
Creating the New Dialect Directories and Files .. 6-1

Making the Component Directory... 6-2
Creating the Source Code Directory .. 6-2
Creating the HSpice Configuration File .. 6-2

Modifying the Configuration File as Needed... 6-3
Modifying the Netlisting Functions as Needed ... 6-4

Modifying Instance Functions... 6-5
Modifying Header and Footer Functions .. 6-9

Creating Component Definitions... 6-11
Primitive Components .. 6-11
Components that Access Models... 6-15
Model Components .. 6-17
Simulation Components ... 6-18
Components that Access Netlist Fragment Subcircuits...................................... 6-21

Verifying the Netlist... 6-22
Component Verification .. 6-23

A Front End Flow Functions
Instance Netlist Exporting Functions .. A-1
Subcircuit Header Functions .. A-4
Subcircuit Footer Functions.. A-5
Netlist Header Function .. A-6
iv

Netlist Footer Function ... A-7
Circuit Output Functions ... A-7
Parameter Formatting Functions .. A-8
Global Variable Functions... A-9

Option Functions .. A-9
cnexNetlistDialogOptions_cb.. A-9

Core Functions ... A-10

B Layered API Functions
Layered API Functions ... B-1

api_dlg_add_callback ... B-1
api_dlg_create_dialog .. B-1
api_dlg_create_item ... B-2
api_dlg_find_item ... B-3
api_dlg_get_resources ... B-3
api_dlg_set_resources ... B-4

Layered API Dialog Elements... B-4
API_CHECK_BUTTON_ITEM.. B-4
API_DROPDOWNLIST_COMBO_ITEM .. B-5
API_EDIT_TEXT_ITEM.. B-6
API_LABEL_ITEM.. B-7
API_LIST_ITEM ... B-8
API_PUSH_BUTTON_ITEM .. B-9
API_TABLE_GROUP.. B-10

Layered API Table Options ... B-12
Index
v

vi

Chapter 1: Setup
This chapter covers the installation configuration file settings for Front End Flow. For
information on using Front End Flow, refer to the ADS Netlist Exporter manual.

License Requirements
The following license is required for Front End Flow to operate in Advanced Design
System:

• Spice_netlist_trans

This license is associated with the E8880 SPICE Netlist Translator module.

Note Before continuing, ensure that you have a valid license for the ADS schematic
environment. For more information on ADS licenses, refer to “Setting up Licenses on
UNIX Systems” in the ADS “Installation on UNIX Systems” manual or “Setting Up
Licenses on PC Systems” in the ADS “Installation on PC Systems” manual.

Installing Netlist Exporter
The Netlist Exporter installation procedure continues to be improved to make it
easier for you to install and configure. Netlist Exporter is now installed with each
installation of Advanced Design System that includes the Simulators and Design
Entry component. For more detailed information on the Netlist Exporter installation
procedure, refer to the information below.

To install Netlist Exporter:

1. For a UNIX installation, follow the instructions in the ADS “Installation on
UNIX Systems” manual to run the SETUP utility and load the install program.

For a PC installation, follow the instructions in the ADS “Installation on PC
Systems” manual. The setup program will automatically bring up the Software
Installation Wizard.
License Requirements 1-1

Setup
2. After the Agilent EEsof Installation Manager starts, you are prompted to select
one of the following installation options:

• Typical - If you choose a Typical installation, the Netlist Exporter will be
automatically installed.

• Complete - If you choose a Complete installation, the Netlist Exporter will be
automatically installed.
1-2 Installing Netlist Exporter

• Custom - If you choose a Custom installation, you must select the Simulators
and Design Entry component from the scroll-down list in the Agilent EEsof
Software Installation dialog box.

Note The Simulators and Design Entry component is the basic ADS software,
including the Design Environment, Data Display, and Analog/RF Systems and
Signal Processing simulators. This is a minimum requirement for Netlist
Exporter.

3. Continue the installation process by following the setup instructions. After the
installation is complete, you will have the following:

• In $HPEESOF_DIR, there will be a netlist_exp directory. This is the
installation home of Front End Flow.

• In the config directory, there will be a new CNEX.cfg file, which contains the
default settings for the Front End Flow.

• A menu labeled Netlist Export will appear in the tools menu on Schematic
windows.

For more information on installation procedures, refer to the ADS “Installation on
UNIX Systems” or ADS “Installation on PC Systems” manual.

Configuration File Settings
The following configuration options exist and can be modified in CNEX.cfg files.
Modifications can be made to the following CNEX.cfg files:

• $HPEESOF_DIR/config/CNEX.cfg

• $HPEESOF_DIR/custom/config/CNEX.cfg

• $HOME/hpeesof/config/CNEX.cfg.

Note Do not make modifications to the file CNEX.cfg that is within your working
project. This file is automatically updated by the Front End Flow application.
Configuration File Settings 1-3

Setup
CNEX_TOOL

This value is used to construct AEL paths and component paths so that appropriate
code and component definitions will be used. The CNEX_TOOL value will default to
Assura after installation. The netlist export and component dialog settings modify
the CNEX_TOOL value in the CNEX.cfg file that is within the current working
directory. No manual change is necessary.

CNEX_HOME_DIR

This value specifies the home directory for user defined AEL customizations and
component definitions. It is available as a shorthand notation for the
CNEX_EXPORT_FILE_PATH and CNEX_COMPONENT_PATH variables.

Note It is recommended that this value not be changed from its default value of
{$HOME}/hpeesof/netlist_exp. If you do not wish to have user customizations
available, remove CNEX_HOME_DIR from CNEX_EXPORT_FILE_PATH and
CNEX_COMPONENT_PATH.

CNEX_CUSTOM_DIR

This value specifies the directory used for site-wide Front End Flow customizations.
The default value is {$HPEESOF_DIR}/custom/netlist_exp. If you do not wish to
follow the ADS standard for site wide customization, this directory can be changed
into any Unix or PC path.

CNEX_INSTALL_DIR

This value specifies the installation point of the Front End Flow software. The default
value is {$HPEESOF_DIR}/netlist_exp. If you wish to maintain multiple versions of
Front End Flow software, you can install the Front End Flow application at locations
outside of the HPEESOF_DIR directory tree, and alter CNEX_INSTALL_DIR to
point to that directory.
1-4 Configuration File Settings

Note CNEX_INSTALL_DIR must always be set to a valid Front End Flow
installation. The default un-customized files in CNEX_INSTALL_DIR will be loaded
each time during netlist exporting, even if other customization files that contain the
default functions have been created.

CNEX_DESIGN_KIT_PATH

This value will be set during netlist exporting, and will update to include all of the
component directories that are available for CNEX_TOOL in the design kits that are
loaded in the ADS session. No manual change is necessary.

Note This value is empty in the default CNEX.cfg file−do not change this value.

CNEX_DESIGN_KIT_AEL_PATH

This value is set during netlist exporting, and will update to include all of the custom
AEL code for CNEX_TOOL that is available for a design kit. No manual change is
necessary.

Note This value is empty in the default CNEX.cfg file−do not change this value.

CNEX_EXPORT_FILE_PATH

This value specifies the directory search order for AEL code that will be loaded
during netlist exporting. The Front End Flow netlister will always load the files
cnexGlobals.ael and cnexNetlistFunctions.ael when a netlist is to be generated. The
file loader will load each cnexGlobals and cnexNetlistFunctions file found within
CNEX_EXPORT_FILE_PATH.
Configuration File Settings 1-5

Setup
Note When an AEL file is loaded, it will override existing variables and functions.
By loading the files in the order specified, it is possible for later files to override the
default functions that are shipped for Front End Flow. Therefore, place the paths in
priority in the path list: lowest priority path first in the path list and highest priority
path at the end of the list.

The default CNEX_EXPORT_FILE_PATH value is the following:

{%CNEX_INSTALL_DIR}/ael;{%CNEX_INSTALL_DIR}/ael/{%CNEX_TOOL};{%CNE
X_CUSTOM_DIR}/ael;{%CNEX_CUSTOM_DIR}/ael/{%CNEX_TOOL};{%CNEX_HO
ME_DIR}/ael;{%CNEX_HOME_DIR}/ael/{%CNEX_TOOL};{%CNEX_DESIGN_KIT_
AEL_PATH}

Note The CNEX_EXPORT_FILE_PATH value must be a single line in the
configuration file.

CNEX_COMPONENT_PATH

This value specifies the directory search order for Front End Flow component
definitions.

Note Only the first definition encountered in the CNEX_COMPONENT_PATH will
be read. Place the paths in priority in the path list: highest priority path first in the
path list and lowest priority path at the end of the list.

The default value after installation is the following:

{%CNEX_DESIGN_KIT_PATH};{%CNEX_HOME_DIR}/components/{%CNEX_TOOL
};{%CNEX_CUSTOM_DIR}/components/{%CNEX_TOOL};{%CNEX_INSTALL_DIR}/
components/{%CNEX_TOOL}

Note The CNEX_EXPORT_FILE_PATH value must be a single line in the
configuration file.
1-6 Configuration File Settings

Design Tool Support
The following design tools are supported by ADS Front End Flow:

• Cadence Dracula

• Cadence Assura

• Mentor Graphics* Calibre

Component Support

These tools have component definitions available for the ADS standard parts in the
$HPEESOF_DIR/netlist_exp/components directory. User defined libraries and parts
require Front End Flow customization. Refer to Chapter 3, Component Definitions
for customization information. Optionally, you can contact the Agilent Technologies
Solution Services group to contract special support for your user defined libraries and
parts.

Netlist Options Support

Custom AEL code to support netlist options for the supported design tools is provided
in $HPEESOF_DIR/netlist_exp/ael.

Unsupported Design Tools

To use a non-supported design tool with ADS, you will need to customize Front End
Flow to work with that tool. Refer to “Adding Tools to Front End Flow” on page 1-9 for
customization information. Optionally, you can contact the Agilent Technologies
Solution Services group to contract special support for your unsupported design tool.

Front End Flow Directory Structure
Front End Flow has many layered elements. Each subsequent layer adds new
functionality to the product. Part of the layering is the Front End Flow directory
structure.

The following four subdirectories are created in the Front End Flow directory
wherever a netlist_exp is appropriate:
Design Tool Support 1-7

Setup
ael The ael directory contains the compiled AEL (atf) program files with or without the
associated AEL files. Each directory specified in
CNEX_EXPORT_FILE_PATH will be searched for AEL files relevant to Front
End Flow (see “CNEX_EXPORT_FILE_PATH” on page 2-6). The relevant
files will be loaded. For more information on AEL files as they relate to Front End
Flow, see Chapter 4, Customizing a Netlister, and Chapter 5, Setting
up GUI Options.
Within the ael directory, there can be subdirectories that contain AEL files that are
specific to a particular tool. These subdirectories will normally be in
CNEX_EXPORT_FILE_PATH, so that appropriate files will be loaded and
override the default capability of the exporter for a particular tool.

components The components directory contains subdirectories for the tools supported by Front
End Flow. In each tool subdirectory, there are component definition files for the
components set up for Front End Flow for that particular tool. See Chapter 3,
Component Definitions for information on component definition files.
Note Each tool supported for Front End Flow must have a separate directory for its
component definitions. There is no facility to share a component definition between
multiple tools.

config The config directory can be found in the following three locations:
$HPEESOF_DIR/netlist_exp/config
$HPEESOF_DIR/custom/netlist_exp/config
$HOME/hpeesof/netlist_exp/config
The config directory can contain tool−specific configuration files. These files will
contain definitions that are used by the Front End Flow netlister to determine
formatting (for example, MAX_LINE_LENGTH = 1024).
The tool−specific configuration file naming convention is CNEX_config.<tool>.
Other types of configuration files will normally need to be in the standard ADS
configuration file locations ($HPEESOF_DIR/config,
$HPEESOF_DIR/custom/config, $HOME/hpeesof/config, or the
project directory).
See Chapter 2, Configuration Files for more information about configuration
files.

include The files to automatically include in a netlist are specified within the tool−specific
subdirectory of the include directory. See Chapter 4, Customizing a
Netlister, for more information about automatically included files.
1-8 Front End Flow Directory Structure

Adding Tools to Front End Flow
The Front End Flow netlister presents a drop-down list of available tools. The
generated netlist is compatible with the selected tool. See Chapter 3 of the Netlist
Exporter manual. Custom tools can be added to the list to meet specific netlist
requirements.

The Need for Adding Tools

Front End Flow outputs netlists in an HSpice-like format, with the top level circuit
represented as a subcircuit in the generated netlist. This format is ideal for a number
of LVS tools, but is not well suited for simulators. The following are some reasons
that an additional tool may be required:

• The design tool used does not support HSpice-like formats.

• Separate component definitions are required for components that do not have
identical netlist representations for separate tools (even if both tools are able to
utilize the default HSpice-like format).

Adding a Tool

Adding a new tool requires knowledge of how that drop down list is populated.

The configuration variable CNEX_COMPONENT_PATH defines the locations for the
tool component definition files. See Chapter 2, Configuration Files for more
information on CNEX_COMPONENT_PATH. Each tool that is configured needs to
have at least one subdirectory, <tool>, under a Front End Flow
netlist_exp/components directory that contains the component definition files.

If a subdirectory is found under an netlist_exp/components directory, it is assumed
that subdirectory represents the name of a tool for Front End Flow. For example,
there are three Front End Flow standard subdirectories, assura, calibre, and dracula,
in the directory $HPEESOF_DIR/netlist_exp/components. These tool names are
present in the tools drop−down list in the dialogs.

Note If a custom tool is selected from the tools drop−down list, component
definitions will then only be read out of component directories that end in the leaf
directory <tool>.
Adding Tools to Front End Flow 1-9

Setup
To add a new tool to the tools drop−down list, use the following procedure:

1. Make a new directory, <tool>, in a components directory. The name of the new
directory will be the tool name displayed in the tools drop−down list.

The <tool> directory needs to be located under one or more of the
netlist_exp/component directories in CNEX_COMPONENT_PATH. It is not
necessary to have <tool> located under every netlist_exp/component directory.

The next time a Front End Flow dialog is called, it will have tool in the tools list.

2. If the default netlist exporting format is inappropriate for the new tool, it will
be necessary to create custom AEL code that will support the new tool. Refer to
Chapter 4, Customizing a Netlister for the process to write custom AE code.
Place the custom AEL code in a directory called <tool> under
$HOME/hpeesof/netlist_exp/ael. The Front End Flow netlister will look for
files to support customization in that directory.
1-10 Adding Tools to Front End Flow

Chapter 2: Configuration Files
There are several text configuration files that define variables for the default Front
End Flow netlister and variables for specific tools. This chapter covers the location of
configuration files and which variables can be set for Front End Flow.

Configuration Files Used with Front End Flow
The following four configuration files contain pertinent Front End Flow information:

Configuration File Locations
The configuration files can be located at the following locations:

de_sim.cfg

This file can be located in one or more of the following locations (high to low priority):

• The project directory

• $HOME/hpeesof/config

• $HPEESOF_DIR/custom/config

• $HPEESOF_DIR/config

Front End Flow will follow the above priority, for example a variable in the project
directory de_sim.cfg overwrites the value that is defined in
$HPEESOF_DIR/config/de_sim.cfg.

de_sim.cfg The de_sim.cfg file is the PDE configuration file. This file is used to load Front End
Flow.

CNEX.cfg The CNEX.cfg file is the Front End Flow configuration file. This file contains
information used by the core functions of the Front End Flow netlister.

<tool>.cfg The <tool>.cfg configuration file contains specific data for a tool. The configuration
data consists of options that are output into netlists for a particular tool.

CNEX_config.
<tool>

The CNEX_config.<tool> configuration file contains variables that define certain
global variables that are used to create netlists for a particular tool’s format.
Configuration Files Used with Front End Flow 2-1

Configuration Files
CNEX.cfg

This file can be located in one or more of the following locations:

• The project directory

• $HOME/hpeesof/config

• $HPEESOF_DIR/custom/config

• $HPEESOF_DIR/config

Note Do not modify variable values within the project directory CNEX.cfg file. The
project directory CNEX.cfg will be updated with values automatically. User
modifications may be overridden.

<tool>.cfg

This file can be located in one or more of the following locations:

• Design kit directories

• $HOME/hpeesof/netlist_exp/config

• $HPEESOF_DIR/custom/netlist_exp/config

• $HPEESOF_DIR/netlist_exp/config

Note Do not modify variable values within the project directory CNEX.cfg file. The
project directory CNEX.cfg will be updated with values automatically. User
modifications may be overwritten.

CNEX_config.<tool>

This file can be located under any of the netlist_exp directories defined in the
CNEX.cfg directory. Therefore, files can be in {%CNEX_INSTALL_DIR}/config,
{%CNEX_CUSTOM_DIR}/config, or {%CNEX_HOME_DIR}/config. In addition,
design kit directories are checked for a netlist_exp/config directory; therefore, you can
place a CNEX_config.<tool> configuration file in a design kit.
2-2 Configuration File Locations

Configuration File Descriptions
The configuration files are defined as follows:

de_sim.cfg

Modify only the USER_MENU_FUNCTION_LIST configuration variable within
desim.cfg. This variable defines the custom menus within the ADS product. To add
the Front End Flow menu, the following line should be added to de_sim.cfg if it does
not already exist:

USER_MENU_FUNCTION_LIST=app_add_user_menus;app_add_cnex_menus

The function app_add_user_menus is a default function which you can be create. Call
this function first in the list to maintain the default ADS operability. The function
app_add_cnex_menus will add the ADS Front End menu to the schematic tools menu.

If the value USER_MENU_FUNCTION_LIST is already set, add
app_add_cnex_menus to the existing list (if not already present). The list is delimited
by semicolons.

Note If you add app_add_cnex_menus to the USER_MENU_FUNCTION_LIST, and
you do not get the Front End Flow menu, make sure that
USER_MENU_FUNCTION_LIST is not defined in a higher priority de_sim.cfg file
without the app_add_cnex_menus function call.

Priority Override Example

If you have USER_MENU_FUNCTION_LIST=app_add_user_menus in the file
$HOME/hpeesof/config/de_sim.cfg, and
USER_MENU_FUNCTION_LIST=app_add_user_menus;app_add_cnex_menus in
the file $HPEESOF_DIR/custom/config/de_sim.cfg, you will not see the menu. The
value in the home directory de_sim.cfg file will take priority over the value set in the
custom directory de_sim.cfg file.

CNEX.cfg file

The CNEX.cfg file contains all of the configuration variables for starting Front End
Flow, and for specifying paths where component definitions and AEL can be found for
different tools. The following variables can be set in CNEX.cfg:
Configuration File Descriptions 2-3

Configuration Files
CNEX_TOOL

The CNEX_TOOL configuration variable specifies which netlist format will be
created. It is normally set by the Front End Flow dialogs, and stored within the
CNEX.cfg file that is generated in the current project directory. Setting it in the
default configuration file in $HPEESOF_DIR/config will set a default value for the
initial tool to use with Front End Flow.

CNEX_CUSTOM_DIR, CNEX_HOME_DIR, CNEX_INSTALL_DIR

ADS files are ordinarily stored in the following locations:

• $HPEESOF_DIR

The $HPEESOF_DIR directory contains the ADS program as it was installed
from the CD packages.

Note Do not modify the contents of $HPEESOF_DIR. Patches will always
install to $HPEESOF_DIR, overwriting any customizations.

The CNEX_INSTALL_DIR configuration variable specifies the location of the
installation files. The Front End Flow installer will always install the Front
End Flow code to $HPEESOF_DIR/netlist_exp. To move the files from that
location to a directory that is not in the ADS main directory tree, modify
CNEX_INSTALL_DIR accordingly. This may be necessary if you wish to
maintain multiple versions of Front End Flow simultaneously without using
multiple ADS installations.

• Custom directory under $HPEESOF_DIR

The custom directory facilitates site wide customizations and settings. The
custom directory contents are not overwritten when code patches are installed.

The CNEX_CUSTOM_DIR configuration variable specifies the location of the
custom directory storage for the Front End Flow product. It can be set to point
at any directory location. The value defaults to
$HPEESOF_DIR/custom/netlist_exp.

• $HOME/hpeesof

The hpeesof directory in the user’s home directory facilitates user specific
customizations and settings. The custom directory contents are not overwritten
when code patches are installed.
2-4 Configuration File Descriptions

The CNEX_HOME_DIR configuration variable specifies the location of the
home directory storage for the Front End Flow product. It can be set to point at
any directory location. The value defaults to $HOME/hpeesof/netlist_exp.

CNEX_EXPORT_FILES

The CNEX_EXPORT_FILES configuration variable specifies the location of the AEL
files nexGlobals and cnexNetlistFunctions. The default value,
{%CNEX_INSTALL_DIR}/ael, is the installation directory defined by the
CNEX_INSTALL_DIR variable.

Note Do not modify the default value of CNEX_EXPORT_FILES.

CNEX_STARTUP_AEL

The CNEX_STARTUP_AEL configuration variable specifies the AEL file name to
load during ADS boot-up. The default value is
{%CNEX_EXPORT_FILES}/cnexexport.

Note Do not modify the default value of CNEX_STARTUP_AEL. If the variable does
not point to a valid file named cnex_export, Front End Flow will not be loaded.

CNEX_DESIGN_KIT_PATH

The CNEX_DESIGN_KIT_PATH variable will be updated within the current project
directory’s CNEX.cfg file when design kit software is installed. The path variable will
define only the paths to kits that contain a netlist_exp directory with a components
subdirectory for the currently active tool.

Note The value of this variable within the current project directory’s CNEX.cfg file
will overwrite the variable value in any other CNEX.cfg files.
Configuration File Descriptions 2-5

Configuration Files
CNEX_DESIGN_KIT_AEL_PATH

The CNEX_DESIGN_KIT_AEL_PATH configuration variable will be updated within
the current project directory’s CNEX.cfg file when design kit software is installed.
The path variable will define only the paths to kits that contain a netlist_exp
directory with an ael subdirectory for the currently active tool.

Note The value of this variable within the current project directory’s CNEX.cfg file
will overwrite the variable value in any other CNEX.cfg files.

CNEX_EXPORT_FILE_PATH

The CNEX_EXPORT_FILE_PATH configuration variable specifies the locations that
will be searched for Front End Flow AEL files. During netlist exporting, ADS will
search the path and load files with the names cnexGlobals and cnexNetlistFunctions.

AEL has a single name space for all of its variables and functions. When a duplicate
function or global variable is found in a file, it will overwrite the value that is
currently in memory. This allows customizations to be done by creating new functions
or global variables in a cnexGlobals file or cnexNetlistFunctions file. It is not
necessary to duplicate all of the code in the earlier files, only the code that requires
modification. It is also possible to add new functions or variables in the leaf files. This
code will go into the single name space for AEL, and can be accessed globally in the
same manner that the core Front End Flow API functions can be accessed.

Note The path order determines the priority. Place the paths with the lowest
priority first in the list. Files that are located later in the path will then be able to
overwrite the settings that exist in the earlier files.

The default value of CNEX_EXPORT_FILE_PATH includes the definition for
CNEX_DESIGN_KIT_AEL_PATH. It is not necessary to update this value to hard
code the design kit locations.

This variable will also be used to load the GUI options file, cnexOptions.
2-6 Configuration File Descriptions

CNEX_COMPONENT_PATH

The CNEX_COMPONENT_PATH configuration variable specifies the locations that
will be searched for Front End Flow component definition files. When a component
definition file is encountered during netlist exporting, a name will be constructed
consisting of the component design name, with a suffix of .cnex.

The component path will be searched, until the first instance of a file with the name
<component>.cnex is found. That component definition file will then be read and used
to format the instance for the netlist.

Note The path order determines the priority. Place the paths with the highest
priority first in the list.

The default value of CNEX_COMPONENT_PATH includes the definition for
CNEX_DESIGN_KIT_AEL_PATH. It is not necessary to update this value to hard
code the design kit locations.

Tool Configuration Files
Every tool that is used with Front End Flow can potentially have its own netlist
exporting options and netlist exporting options dialog. Because the options dialogs
will be custom written, there is no set format for these configuration files. The
following are some recommendations for the files:

• Make the option configuration variable match the option name.

• Booleans should be output as 0 and 1.

• Lists must be converted into strings with a delimiter.

Note Do not output the values using the identify_value function This will
make it difficult to interpret lists in the configuration file.

CNEX_config Configuration File

Every tool supported by Front End Flow should have an CNEX_config.<tool> file
created for it. This file should be placed in the config directory of
Tool Configuration Files 2-7

Configuration Files
%CNEX_INSTALL_DIR. The settings in the CNEX_config file specify certain global
variables that are used by the Front End Flow netlister. The following are the valid
CNEX_config variables:

CASE_INSENSITIVE_OUTPUT = TRUE | FALSE

The ADS schematic environment is case sensitive. Most Spice formats are not case
sensitive. If CASE_INSENSITIVE_OUTPUT is set to TRUE, the netlister will map
all netlist node names and instance names to lower case. The netlister will then
check for conflicting names when the final netlist is created. If conflicts are found, a
warning will be displayed that indicates the conflicting names.

The CASE_INSENSITIVE_OUTPUT default value is TRUE.

Note Additional name mapping will not be performed to resolve name conflicts.
Case sensitivity issues (name conflicts) will require manual name edits within
schematics.

COMPONENT_INSTANCE_SEPARATOR

The COMPONENT_INSTANCE_SEPARATOR configuration variable specifies a
separation charter to be inserted in between the Spice component type character and
the ADS instance name. This can be used to increase readability of the final netlist
(some Spice dialects use a leading character to designate the component type. For
example R designates a resistor).

For example, specifying the underscore character, _ , would generate a Spice netlist
instance name of R_R1 for an ADS resister component with the name R1.

The COMPONENT_INSTANCE_SEPARATOR default value is null.

EQUIV = <node1> <node 2>

The EQUIV configuration function combines two nodes, <node1> and <node2>
together into <node1>. This function is useful for nodes that are connected (common)
on the schematic.

As many EQUIV lines can be placed in the configuration file as are necessary to
define all of the equivalent node names. During netlist exporting, any time <node 2>
is encountered, it will be renamed to <node 1>. In addition, this list is built internally
by the ignore instance netlist exporting functions.
2-8 Tool Configuration Files

EXPRESSION_MAPPING = <ADS name> <netlist name>

The EXPRESSION_MAPPING configuration function maps ADS expressions, <ADS
name>, to a user defined expression name, <netlist name>.

When a parameter value is encountered, it will be searched for expressions. Any
expression that is found in the expression mapping list will be converted from the
ADS expression name, <ADS name>, to the target netlist expression name, <netlist
name>.

For example, in HSpice, the natural logarithm function is log, in ADS it is ln. To have
the netlister change all instances of ln to log, add an expression mapping line of
EXPRESSION_MAPPING = ln log in the CNEX_Config.hspice configuration file.

Place one EXPRESSION_MAPPING line for each expression to be mapped within
the configuration file.

EXPRESSION_START, EXPRESSION_END

The EXPRESSION_START configuration variable specifies a expression start
character and the EXPRESSION_END configuration variable specifies the
expression end charter to be used for HSpice and PSpice netlist generation. (HSpice
and PSpice require special characters to designate the start and end of an
expression.)

ADS allows expressions in its parameter values, it may be necessary to have those
expressions prefixed with the expression start designator, and suffixed with the
expression end designator.

For example, if EXPRESSION_START is set to ‘ and EXPRESSION_END is also set
to ‘, and an instance value of R=RVal1+RVal2 is specified on an ADS resistor, the
value output to the netlist would be R=’RVal1+RVal2’.

The default is to have no expression start or end designators.

GROUND

The GROUND configuration variable specifies the global ground node name.

In ADS, node 0 is the global ground node. All instances of node 0 are mapped to the
value of the value of GROUND.

For example, if it is known that the layout uses GND as the ground node, set the
GROUND value to GND. All nodes named 0 will be output as GND.
Tool Configuration Files 2-9

Configuration Files
The default is no node 0 name mapping.

LINE_COMMENT

The LINE_COMMENT configuration variable specifies the character to output at the
beginning of comment lines. The default value is *.

LINE_CONTINUATION_CHARACTER

The LINE_CONTINUATION_CHARACTER configuration variable specifies the
character used to declare a line continuation.

If the maximum line length for the netlist is exceeded, a line continuation will be
output. Different tools support different methods for declaring a line continuation.
This will either be output at the end of the current line, or at the beginning of the
next line, depending on the LINE_CONTINUATION_MODE variable.

The default LINE_CONTINUATION_CHARACTER value is +.

LINE_CONTINUATION_MODE

The LINE_CONTINUTATION_MODE configuration variable specifies how the
continuation character will be output when a continuation line is required. A value of
0 will be output the continuation character at beginning of the next line. A value of 1
will be output the continuation character at the end of the current line. Values above
1 are reserved for future use.

The default LINE_CONTINUTATION_MODE value is 0.

MAX_LINE_LENGTH

The MAX_LINE _LENGTH configuration variable specifies the maximum line length
that will be output before a line continuation character is output.

The default MAX_LINE _LENGTH value is 1024 characters.

NUMERIC_NODE_PREFIX

The NUMERIC_NODE_PREFIX function adds a specified prefix to system defined
node names.

ADS supports the following two type of node names:

• Wire label
2-10 Tool Configuration Files

The node names are explicitly defined by the user. The
NUMERIC_NODE_PREFIX function ignores these node names.

• System node name

Node names are system generated for any net that does not have an explicit
label, or is not attached to ground. The system node names are numbers only. If
you are using a tool that does not support numeric node names, use the
NUMERIC_NODE_PREFIX function to add a prefix to all system defined node
names.

The default value for the node prefix is _net.

Note In ADS netlists, the _net prefix designates that the node name will not be
saved to a dataset.

For example, if the NUMERIC_NODE_PREFIX is set to _net, and a node is
encountered in ADS with the system defined node name 27, the netlister will output
the value _net27 for the new node name.

SCALAR_TO_SCIENTIFIC = FALSE | TRUE

The SCALAR_TO_SCIENTIC function maps scalar quantities into scientific
notation.

The SCALAR_TO_SCIENTIC function is useful if your tool’s netlist format does not
support scalars. See SCALAR_UNIT_MAPPING for information on customizing
scaler mapping.

The SCALAR_TO_SCIENTIC default value is FALSE. (No function line present
equals FALSE.)

For example, if SCALAR_TO_SCIENTIC is set to TRUE, 1n would be output as 1e-9.

SCALAR_UNIT_MAPPING = <ADS Scalar> <netlist scalar>

The SCALAR_UNIT_MAPPING function maps specified scalar quantities, <ADS
Scalar>, into the specified representation, <netlist scalar>.

Use the following mapping guidelines:

• Place one line into the file for each scalar that is to be mapped.
Tool Configuration Files 2-11

Configuration Files
• Include units and scaling value (for example, MHz) for the ADS scalar quantity,
<ADS Scalar>.

• If you want nothing output for the scalar, leave the second field blank (for
example, SCALAR_UNIT_MAPPING = A).

When the value is output to the netlist, any occurrences of the ADS scalar/unit will
be replaced with the netlist equivalent.
2-12 Tool Configuration Files

Chapter 3: Component Definitions
In ADS, a component is a symbol that has a specific set of parameters and terminals.
It may also have a related schematic or layout.

Every component makes a single call to the create_item() function which defines the
name of the symbol file, the schematic file, and the parameters. The create_item call
causes ADS to create a uniquely named component. These uniquely named
components can go into ADS schematic hierarchies that are netlisted and simulated
in the ADS simulator.

For netlist exporting, the terminals are determined by accessing the schematic
database file and the symbol database file. These do not have to be the same file in
ADS.

Component Definition Files
Component definition files are ASCII text files in the CNEX_COMPONENT_PATH
that contain variables that determine how to netlist a component for a particle tool.
Variable names are not case sensitive, but their values are. The variables can be in
any order in the file.

Note The file <ADS component name>.cnex must be in the appropriate tool directory
for the component definition file to work.

ADS subcircuits do not need to have a component definition file because they inherit
the default subcircuit format. However, if an ADS component is not a hierarchical
design, it must have a definition file.

Component Definition File Variables

Netlist_Function

This variable contains the name of the instance function to be called to format an
instance of a component for a netlist.

You have three options for choosing an instance function:
Component Definition Files 3-1

Component Definitions
• You can use the functions that come with Front End Flow (They are in the
“Instance Netlist Exporting Functions” on page A-1).

• You can enter the name of a custom written function.

• You can leave the Netlist_Function out of the component definition file. In this
case, Front End Flow automatically uses the function cnexSubcircuitInstance if
the component is a subcircuit, and cnexUnknownInstance if it is a primitive.

Syntax

Netlist_Function = < function>

Example

Netlist_Function = cnexNetlistInstance

Component_Name

This variable specifies the name for the component instance in the netlist.

In general you can assign any name, but there are some rules for specific cases:

• If you use the netlist function cnexSubcircuitInstance, you can type in
subcircuit for the component name. Or, you can assign any other name.

• If you want to use the value of a parameter as the component name, use @

followed by the name of the parameter.

• If you use Spice, you can use a single letter for the component name.

Syntax

Component_Name = < name>

Example

Component_Name = R

Note You must always assign a value to this variable in the Component Definition
File.
3-2 Component Definition Files

Terminal_Order

This variable specifies the order for outputting component pins for netlist exporting.

• You can specify the order in either pin numbers or pin names, but you cannot
use both together.

• If you do not assign an output order, Front End Flow uses the ADS pin output
order which is sequential by pin number.

Note Other tool vendors may use a pin output order that is different from the
ADS order. Check the documentation for information on the correct order when
you specify this variable.

Note Many of the standard ADS components do not have pin names, so you
must assign pin number output order.

Syntax

Terminal_Order = < value>

Example

Terminal_Order = 1 2

Parameters

This variable specifies the parameters to output to the netlist for an instance. Front
End Flow outputs the parameters in the order you list them.

• You should specify the parameters as a space delimited list.

• If you do not specify this variable, no parameters will be output for the instance.

Syntax

Parameters = < parameter> < parameter>

Example

Parameters = R _M Model Width Length
Component Definition Files 3-3

Component Definitions
Parameter_Name_Mapping

This variable maps an ADS parameter name to a netlist name.

If you do not want to output the ADS parameter name to, leave Netlist Name blank.

If you want the ADS parameter name to be the same as the netlist name, do not
assign this variable.

Syntax

Parameter_Name_Mapping = < ADS Name> (< Netlist Name> |)

Example

R1 is an instance in ADS. It connects to nodes _net1 and ground, and has the
parameters R=50 and _M=2:

Parameter_Name_Mapping = R

• The ADS parameter name R is not mapped to a netlist name.

Parameter_Name_Mapping = _M m

• The ADS parameter name _M is mapped to the netlist name m.

Resulting netlist output for Dracula is the following:

RR1 _net1 0 50 m=2

• R is not mapped, therefore it is output as 50 in the instance line.

• _M is mapped to m, therefore it is ouptut as m=2 in the instance line.

Parameter_Type_Mapping

This variable specifies the AEL mapping function for an ADS parameter.

• If you specify an AEL mapping function, the ADS parameter value will be
passed to that function.The function returns the value that needs to be output
to the net list.

• If you do not specify an AEL mapping function for a parameter, no mapping will
be done.

Syntax

Parameter_Type_Mapping = < ADS parameter> < AEL mapping function>
3-4 Component Definition Files

Example

A custom resistor component named myAdsRes is in ADS. It has two models,
myAdsRes1 and myAdsRes2. The Dracula LVS rule file extracts these models as R1
and R2. For correct netlist output, you must map myAdsRes1 to R1 and myAdsRes2
to R2. In myAdsRep.cnex, the component definition file, add the following line:

Parameter_Type_Mapping = Model myAdsResMap

When the circuit is netlisted, the function myAdsResMap will be called when the
Model parameter is output. The function will return the appropriate values for
output for Dracula.

Note There are no standard AEL type mapping functions. You must write them. See
“Adding Value Mapping Functions” on page 4-2 for information. Check the
documentation for the tool you are using to verify the value outputs that it needs.

Component Definition File Editing

There are the following two ways to edit component definition files:

• You can use a text editor to directly edit the component definition files.

• You can use the Component Definition Editor, see “Component Definition File
Setup with the GUI” on page 3-5.

Component Definition File Setup with the GUI
The Component Definition Editor (Figure 3-1) graphical user interface is available
from the Tools > Netlist Export menu. The Editor enables you to specify all the fields
needed for a component definition.

The Component Definition Editor can also read in ADS item definitions so that it can
automatically populate the fields for components that do not already have a
definition. For defined components, it can provide information about available
parameters in the ADS item definition. The Component Definition Editor
automatically updates the component definition table, preventing the use of old
definitions.
Component Definition File Setup with the GUI 3-5

Component Definitions
Figure 3-1. Component Definition Editor

Component Definition Editor Items

Tool: Choose the tool you want from drop-down menu. The default tool when
you start the Component Definition Editor is the last one specified
in the component edit or the netlist dialog.

Component: Type in the component name.

Browse... If you do not know the name of the component you want to edit, press
Browse... to bring up the Library Browser Winow. The Editor
automatically reads in the definition of the component you select.

Definition File Location This drop-down menu contains the path for the component definition file.
You may edit the path if you do not find the one you want in the menu.
When you edit the path, make sure you specify a file in a site wide
location and not a user location.
3-6 Component Definition File Setup with the GUI

Component Definition Editor Items

Definition File Location:
Continued

If there is no file at the specified location, the Component Dialog
Editor will follow the component definition path contained in the
CNEX_COMPONENT_PATH configuration variable and use
the first definition file it finds.
If there is no definition file, Front End Flow will create one based on the
information in the AEL create_item call.

The following fields are for entering variable vales in the component definition file.

Netlist Function: Choose the name of the function you want to use to format an instance
of the component for netlist exporting. “Instance Netlist
Exporting Functions” on page A-1 contains the list of the
default functions that come with Front End Flow.
You can also write your own netlist export function.
If you do not choose a function, Front End Flow will use the
cnexSubcircuitInstance if the component is a subcircuit, or
cnexUnknownInstance if the component is a primitive.

CNEX Component Name: Type in the name you want for the component instance.
If use the cnexSubcircuit netlist function (see Netlist Function:
above), you can use subcircuit for a name.
If you are using Spice, you can use a name that is just one character.
In this case, the tool for which you are exporting the netlist will
determine the name.

Terminal Order: This field specifies the pin output order for netlist exporting. The ADS
pin order for a component, which is sequential by pin number, is the
default. You should check with the documentation for other vendor
tools because the pin order for those tools may not be the same as the
ADS default.
You can use either pin numbers or pin names to set the terminal order.
You cannot mix the two.
You must use pin numbers with ADS components because many of
them do not have pin names.
Component Definition File Setup with the GUI 3-7

Component Definitions
Component Definition Editor Items

Component Definition Editor Items

Parameters: This list box contains the parameters you want to output. The
parameters are output in the order listed.
To move a parameter forward in the output list, select the parameter
and click the up button.
To move a parameter back in the list, select the parameter and click
the down button.
To remove a parameter from the list, select the parameter and click the
cut button.
To add a parameter, click the add button. The Add a parameter
for netlist exporting dialog box will appear. This dialog box
contains the list of parameters for the current ADS item definition that
are not already in the parameters list. If you do not find the parameter
you need in the list, you must add the parameter to the ADS item
definition for the component.
If the Component Definition Editor finds no definition for the
current component, then the Editor will put all parameters that are
netlisted for ADS in the Parameters list box.
Each parameter has two properties used for netlist exporting: a name
mapping and a value mapping. Click on a parameter in the list to see
its properties and edit them as appropriate.

Map Parameter To This field displays the netlist name for the parameter selected in the
Parameters list box.
If you do not want any mapping for a parameter, the name in this field
should be the same as the parameter name.
If you want to change an existing netlist name in this field, edit the
name in the field.
If you do not want a netlist name for a parameter, make this field blank.

Parameter Type Function This field displays the AEL mapping function for the parameter
selected in the Parameters list box.

Parameter Type Function
Continued

If you specify an AEL mapping function in this field, the ADS
parameter value will be passed to that function.The function returns
the value that needs to be output to the net list.
If you leave this field blank, no mapping will be occur.
Front End Flow has no standard type mapping functions. You must
write your own AEL mapping functions. See “Adding Value
Mapping Functions” on page 4-2 for information
3-8 Component Definition File Setup with the GUI

Component Definition Editor Procedure

1. Select the tool from the Tool: drop-down menu.

2. Type the component name in Component:, or select it by clicking Browse .

3. Press Tab or select the next field in the Editor and Front End Flow will read the
component definition into the Editor.

4. Use Definition File Location: to specify the path to the component definition file.

5. Specify the component definition file variable values in the remaining fields of
the GUI.
Component Definition File Setup with the GUI 3-9

Component Definitions
3-10 Component Definition File Setup with the GUI

Chapter 4: Customizing a Netlister
You can customize the Front End Flow netlister. You can automatically include files
and add value mapping functions to those described in Appendix A, Front End Flow
Functions. You can also add netlist exporting functions to those already in the Front
End Flow API. And, you can override many of the functions listed in Appendix A,
Front End Flow Functions.

Setting Up Automatically Included Files
The simplest method of customizing a netlister is setting up files that are
automatically included in the final netlist.

Note Refer to the Netlist Exporter manual for the process for excluding included
files.

The Include File Path

You should include files that set the options for a particular process or create the
subcircuits necessary for a foundry process.

Any file in the following directories will be included in the Front End Flow netlist,
unless you set them up to be excluded:

• {%CNEX_INSTALL_DIR}/include/{%CNEX_TOOL}

• {%CNEX_CUSTOM_DIR}/include/{%CNEX_TOOL}

• {%CNEX_HOME_DIR}/include/{%CNEX_TOOL}

• Any design kit path that contains the directory
netlist_exp/include/{%CNEX_TOOL}

Example 1: Including a File Site Wide

You are using the Dracula tool and have set the variable CNEX_INSTALL_DIR to be
$HPEESOF_DIR/netlist_exp. Place the file standard.inc in the directory
CNEX_INSTALL_DIR/include/dracula. Whenever you create a netlist for Dracula,
standard.inc will be included. If you use a different tool, the file will not be included.
Setting Up Automatically Included Files 4-1

Customizing a Netlister
CNEX_INSTALL_DIR is available to all site users, therefore standard.inc will be an
included file for all who use the ADS installation on that site. If the ADS installation
is on a shared drive that all users access, the included file will be automatically
available to those users.

Example 2: Foundry Kit Include File

You have a foundry design kit from Foundry A that has the file foundryAOptions.inc,
and you are using Dracula. Place the file in netlist_exp/include/dracula. When you
run Dracula, foundryAOptions.inc will be automatically included.

Adding Value Mapping Functions
When the tool you have chosen uses a different type of name than does ADS, or when
that tool uses different parameters or values than does ADS, you must write an AEL
value mapping function to supply the tool with the correct output.

Case 1: Name Mapping

Use ADS model names that indicate what the component is, such as myAdsRes1.
However, Dracula only allows two character model names. Map the ADS name to a
two character name that Dracula recognizes.

Case 2:Parameter Mapping

A single parameter in ADS may need to map to multiple parameters in another tool,
or multiple parameters in ADS may need to map to a single parameter.For example,
in ADS the V_1Tone device has the parameters voltage and frequency. If you use the
HSpice tool, you must map those parameters to the single SIN function for the
correct HSpice output.

Case 3: Parameter Value Mapping

You may need a function that performs an operation on a parameter that is a value in
ADS and returns a value that is mapped to a parameter in another tool. For example,
you want to map the ADS temperature parameter to the differential dtemp
parameter in HSpice. This requires a function that sets the ADS parameter value to
the absolute temperature set in ADS and subtracts the circuit temperature. The
function returns a value that contains the differential temperature and maps it to
dtemp.
4-2 Adding Value Mapping Functions

Function Prototype and Example

You must write all AEL value mapping functions. All value mapping functions
receive an ADS parameter value and return the correct tool value. They all use the
following prototype:

defun <function name> (value)
{
<your code here>
return(<new value>);
}

In addition to the parameter value you pass to the function, you must set the
following three global variables:

• cnexCurrentRep

This is a handle to the schematic that is currently being processed. The handle
can be used to obtain data about other instances in the circuit.

• cnexCurrentInst

This is a handle to the instance that is currently being processed. The handle
can be used to get instance data, or data for other parameters.

• cnexCurrentParam

This is a handle to the parameter that is currently being processed. Parameter
attributes can be obtained by referencing this handle.

Example1: Writing a Type Mapping Function

defun myFoundryAddQuotes (value)
{
decl newValue=value;

if(is_string(value))
{
newValue=strcat(“\””, value, “\””);
}

return(newValue);
}

This function adds quote marks around the ADS value passed to it.
Adding Value Mapping Functions 4-3

Customizing a Netlister
Adding the New Netlist Function

To add an instance netlist function, edit the component definition file for your
component by adding a line with the syntax: Parameter_Type_Mapping = <param>
<function>.

Example1: Adding the Function to the Component Definition File

You have an ADS component named myNpn which has a parameter named Model.
You are using the type mapping function myFoundryAddQuotes.

1. Open the file the component definition file myNpn.cnex.

2. Add the line: Parameter_Type_Mapping = Model myFoundryAddQuotes

When an instance of myNpn component is netlisted, the parameter value for Model
will have double quotes around it.

Placing the Type Mapping Function

The configuration variable CNEX_EXPORT_FILE_PATH specifies the path where
ADS searches for AEL files. During netlist exporting, ADS loads files named
cnexGlobals and cnexNetlistFunctions located in that path.

AEL has a single name space for all of its variables and functions. All files named
cnexGlobals or cnexNetlistFunctions in any path contained in the
CNEX_EXPORT_FILE_PATH use this space. Therefore any AEL function has access
to all AEL variables and functions.

These functions can be added in at any time. Every time the Front End Flow netlister
is executed, all of the cnexNetlistFunctions and cnexGlobals AEL files are loaded.

Note See Chapter 2, Configuration Files for more information on
CNEX_EXPORT_FILE_PATH.

Example 1: Placing the Function

You want to place the function myFoundryAddQuotes so that Front End Flow can use
it. Add a file named cnexNetlistFunctions to the directory
{%CNEX_INSTALL_DIR}/ael/{%CNEX_TOOL}. If you wrote the function for
HSpice, the directory would be $HPEESOF_DIR/netlist_exp/ael/HSpice. The next
4-4 Adding Value Mapping Functions

time that a Front End Flow netlist is generated, the myFoundryAddQuotes function
will be available.

Validating a Type Mapping Function

Once the files have been loaded by creating a Front End Flow netlist, you can
validate your function interactively using the ADS Command Line window. Bring up
by selecting the menu option Options > Command Line from the main window. Enter
an AEL function in the command line and you will see the value the function returns.

Validating Functions that Do Not Use Global Variables

Simple type mapping functions that do not require global variables to be set can be
tested rapidly by using the info command and typing the function into the Command
Line. This is shown in Figure 4-1.

Figure 4-1. Accessing the AEL Command Line to Verify Functions

1. Enter the function in the Command Line window.

2. The resulting return value appears in the Information window when you use
the info dialog.
Adding Value Mapping Functions 4-5

Customizing a Netlister
Note The info dialog is modal and stops the execution of any further AEL
operations.

Validating Functions That Do Use Global Variables

Use the fputs function and specifying stderr as the destination of the output. The
fputs command using stderr will output text to the xterminal window from which
ADS started.

1. Type the command fputs(stderr, myFoundryAddQuotes(“myModel”)) in the
command line.

2. The result will display in the xterminal window.

Note If you are running Front End Flow on a PC, be aware that it has no
xterminal window. However, if you run ADS with the -d option you will have a
debug window in which you can see the stderr output. The debug window will
also display inter-process function call text.

If the function needs global variables, add fputs(stderr, value) calls in your code.

Using Some Other Debugging Tips

• The identify_value function converts any AEL expression passed to it into a
string. It is useful if you have values that are set to NULL, or if you are
debugging lists because the fputs command only outputs strings.

• For formatted debugging output, you use fprintf(stderr, ...) . The fprintf
function in AEL utilizes the same formatting strings as the Ansi C fprintf
function.

Adding New Netlist Exporting Functions
The Front End Flow API provides 8 instance netlist exporting functions. Although
these functions provide the correct output for nearly any ADS instance, there are
some situations where you must write your own function in order to have the correct
output. Some examples of this are outputting multiple instead of single components
to a netlist file, and outputting a library or directive with a component.
4-6 Adding New Netlist Exporting Functions

Function Prototype and Example

All instance netlist exporting functions must have the following function prototype:

defun <function name> (instH, instRecord)
{
<your code here>
return(<string>);
}

• The parameter instH is the handle to the instance that is currently being
formatted.

• The instRecord parameter is a list of lists that contains the information
obtained by reading the component definition file for the instance.

• The return string is the value you wish to be output to the netlist file.

Example1: Writing a Type Mapping Function

defun myNpnInstance (instH, instRecord)
{
decl net=””;
decl netReturn=cnexNetlistInstance(instH, instRecord);

net=strcat(“.lib ‘MYMODELS’ npn\n”, netReturn);

return(net);
}

The function myNpnInstance causes the myNpn component to output a .lib statement
when the instance is netlisted. The myNpnInstance function calls the
cnexNetlistInstance function to get the instance netlist exporting line. The result from
cnexNetlistInstance is then concatenated with the .lib statement. The result is then
returned.

Using the New Netlist Function

To use an instance netlist function, you must edit the component definition file for
your component by adding a line with the syntax: Netlist_Function = <function>.

Adding the Function to the Component File

Open myNpn.cnex, component definition file for myNew, and change the line
Netlist_Function is changed so it reads:
Adding New Netlist Exporting Functions 4-7

Customizing a Netlister
Netlist_Function = myNpnInstance

The myNpn component will now use the newly created instance netlist exporting
function.

More detailed examples can be found in Chapter 6, Hspice Netlister Example.

Placing a New Netlist Exporting Function

The configuration variable CNEX_EXPORT_FILE_PATH specifies the location where
ADS searches for AEL files. During netlist exporting, ADS follows the path and loads
files named cnexGlobals and cnexNetlistFunctions.

AEL has a single name space for all of its variables and functions. All files named
cnexGlobals or cnexNetlistFunctions in any path contained in the
CNEX_EXPORT_FILE_PATH uses this space. Therefore any AEL function has
access to all AEL variables and functions.

These functions can be added in at any time. Every time the Front End Flow netlister
is executed, all of the cnexNetlistFunctions and cnexGlobals AEL files are loaded.

Note See Chapter 2, Configuration Files for more information on the
CNEX_EXPORT_FILE_PATH.

Adding the New Instance Netlist Exporting Function to a File

You want to place the function myNpnInstance. Add a file named
cnexNetlistFunctions to the directory
{%CNEX_INSTALL_DIR}/ael/{%CNEX_TOOL}. If you wrote the function for
HSpice, the directory would be $HPEESOF_DIR/netlist_exp/ael/HSpice. The next
time that a Front End Flow netlist is generated, the myNpnInstance function will be
available.

Overriding Existing Front End Flow API Functions
Front End Flow provides API netlister functions for three tools: Dracula, Calibre, and
Assura. Appendix A, Front End Flow Functions describes these functions. If you use
a different tool, you should override the default API functions relevant to the correct
4-8 Overriding Existing Front End Flow API Functions

output for your tool. To override means to keep the name of the default API function,
but to modify its code so that it provides the correct output for your tool.

It is better to override the existing API functions than to write a new one with a new
name. The reason is that end users may need to modify standard ADS component
definitions so that they can map into your foundry process. These standard ADS
components use the default API function names. If you use new API function names,
the end user will not know the use of the new function, unless you supply that
information. If you override the default functions, the end user can use the standard
Front End Flow documentation.

You can override the functions at any time. Every time the Front End Flow netlister
is executed, all of the cnexNetlistFunctions and cnexGlobals AEL files are loaded.

Function Prototype

To override a Front End Flow API function, you must make sure to follow the
function prototypes that are defined in Appendix A, Front End Flow Functions.

• Whenever you override, you must use the same argument list and return name
as the default function.

• There are some core functions in Front End Flow that will call the API
functions directly. Those functions cannot be overridden.

Note If the functions called by the Front End Flow core return incorrect
names, or receive the wrong arguments, the Front End Flow netlister will error
out and no netlist will be produced.

Example 1: Overriding the Top Cell Header Function

The function that controls how the top cell is output is the Front End Flow API
function cnexOutputTopcellHeader. The values it receives are the design name and
the design handle. For the Dracula-spice netlister, the function simply calls the
subcircuit header function, which will cause a .subckt line to be created for the top
cell as follows:

defun cnexOutputTopcellHeader(designName, dsnH)
{
 return(cnexOutputSubcircuitHeader(designName, dsnH));
}

Overriding Existing Front End Flow API Functions 4-9

Customizing a Netlister
For HSpice, the .subckt line is not required. In this case, override the default API
function to output nothing for the top cell header:

defun cnexOutputTopcellHeader(designName, dsnH)
{
 return(““);

}

Place this function into a file called cnexNetlistFunctions. Put this file in an HSpice
subdirectory in one of the CNEX_EXPORT_FILE_PATH directories. When a netlist
is created for HSpice, it will no longer use the default top cell function, it will use the
API function that was modified for HSpice.

For more detailed examples of overriding API functions, refer to Chapter 6, Hspice
Netlister Example.

Subclassing a Function Definition

You may want to simply add a feature to an existing API function instead of
overriding it. This is called subclassing a function.

In AEL, everything can be accessed as a variable, including functions. If you create a
variable and set the variable equal to a function, you can call the variable value just
like it was the function name. To save the function so you can access it later, you need
to define the AEL variable as a global variable.

You can also create a variable and store a function to the variable, then override the
function. The old definition is still in memory, and can be accessed through the
variable. To save the function so you can access it later, you need to define the AEL
variable as a global variable, and you must set the variable value prior to creating
your new function.This is similar to accessing a parent method in C++, but the
functions are not stored in classes.

Example 1: Subclassing an Original AEL Function

You have a function called cnexOutputTopcellHeader. You do not want to change how
the function works, you just want to add a comment to it. The following code
maintains the original function and adds your comment:

decl originalCnexOutputTopcellHeader=cnexOutputTopcellHeader;
defun cnexOutputTopcellHeader(designName, dsnH)
{
decl net=originalCnexOutputTopcellHeader(designName, dsnH);
4-10 Overriding Existing Front End Flow API Functions

decl returnNet=”* Subclassed the original function to add this comment\n”;

returnNet=strcat(returnNet, net);

return(returnNet);
}

The first line creates the global AEL variable originalCnexOutputTopcellHeader and
assigns it the value cnexOutputTopcellHeader.

Note The function value is a memory pointer, so the global variable points to the
same memory location as cnexOutputTopcellHeader. Once you have assigned the
variable value, you can call that variable as if you had used a defun call to create a
brand new function.

The fifth line adds the comment to the value generated by the function to which the
variable originalcnexOutputTopcellHeader points, the function
cnexOutputTopcellHeader.
Overriding Existing Front End Flow API Functions 4-11

Customizing a Netlister
4-12 Overriding Existing Front End Flow API Functions

Chapter 5: Setting up GUI Options
The Netlist Exporter manual describes the netlist exporting dialog. The dialog has a
command button labeled Modify Option List. When you click it, a file named
cnexOptions loads in the location specified by the path in
CNEX_EXPORT_FILE_PATH. The GUI Option dialog creates this file, the content of
which depends on the tool you have chosen. The cnexOptions file loaded by the GUI
dialog overrides the default version of cnexOptions that comes with Front End Flow.

Note A working knowledge of AEL programming is required to setup GUI options.

Option List Global Variable
The Front End Flow API function cnexExportNetlistHeader outputs netlist lines at
the beginning of the netlist file. The header lines include comment lines, file includes,
and global option statements.

The function cnexExportNetlistHeader collects the global option statements from the
global variable cnexExportOptionList. This variable contains one text entry for each
option line that appears in the netlist.

The following list shows some netlist options for various tools:

• Dracula: *.BIPOLAR

• HSpice: .TEMP 25

• ADS: Options ResourceUsage=yes

To output an option into the netlist file, the global option variable,
cnexExportOptionList must have a line that specifies the option.

For example, to get the *.BIPOLAR option to appear in the header of a Dracula
netlist file, write the following line:

cnexExportOptionList=list(“*.BIPOLAR”);

This causes a single option, *.BIPOLAR, to be output in the netlist header.

You can also add more options to the cnexExportOptionList variable by using the ADS
append command as follows:

cnexExportOptionList=append(cnexExportOptionList, list(“*.CAPVAL”));
Option List Global Variable 5-1

Setting up GUI Options
This adds the option, *.CAPVAL, to the list.

The following method is recommended to build up your option list:

1. Read all of your options from a configuration file.

2. Use the append function to build up the final cnexExportOptionList.

Option List Global Variable for Dracula

In the cnexOptions file, Dracula has a function, cnexSetupDraculaOptions, that uses
the ADS AEL function getenv to retrieve configuration file values. It then checks the
values of the configuration variables and determines how to set up the global option
variable, cnexExportOutputList.

The following code is an example of the use of cnexSetupDraculaOptions for
conditional loading of options. The Dracula options used depend on the options in the
global options list.

Making an Options List for Dracula

defun draculaConvertToBoolean(value)
{
 if(value == "1")
return(TRUE);
else
return(FALSE);
}

defun cnexCreateNetlistOptionList(value)
{
 cnexExportOptionList=append(cnexExportOptionList, list(value));
}

defun cnexSetupDraculaOptions()
{
cnexExportOptionList=NULL;
decl bipolar=draculaConvertToBoolean(getenv("bipolar", "dracula"));
if(bipolar)
{
cnexCreateNetlistOptionList("*.BIPOLAR");
decl capa=draculaConvertToBoolean(getenv("capa", "dracula"));
if(capa)

The function getenv(<option>, <file>) receives the specified option from the specified
file name.
5-2 Option List Global Variable

The function draculaConvertToBoolean checks to see if the value returned for a
configuration variable is 1. If it is, the value returned is the boolean TRUE value;
otherwise, FALSE is returned. This function is needed because the getenv function
will return strings, even if a value could be interpreted as a number.

Note If you request a configuration variable that does not exist with the getenv
function, it will return NULL. Otherwise, the text value of the variable will be
returned.

It is usually recommended that your option configuration file have the same name as
the Front End Flow configuration file. However, this is not required because the
configuration file name can be hard coded

It is recommended that you write a function that retrieves the options settings from a
configuration file. That way, you can set the global options list up by calling the
function anywhere within your own code.

Overriding the cnexNetlistDialogOptions_cb
Function
Clicking the Modify Option List button in the GUI Option dialog calls the function
cnexNetlistDialogOptions_cb. The default of this function that comes with the Front
End Flow installation returns the following message:

There are no options for the tool <tool>

If you want the user to be able to see and modify available options for a tool, you will
need to create a new cnexNetlistDialogOptions_cb function that provides a dialog
window that allows the user to set up options graphically.

Note If you want end users to always use the same options, set up a file that is
automatically included (see “Setting Up Automatically Included Files” on page 4-1).
Put the options in the file with which you want the end user to work.
Overriding the cnexNetlistDialogOptions_cb Function 5-3

Setting up GUI Options
Function Prototype

Dialog windows are created in ADS using an extension to the AEL language called
Layered API (LAPI). LAPI is a C++ based library that has wrappers to allow you to
create dialog windows.

The prototype for the API callback function for dialog options is:
cnexNetlistDialogOptions_cb(<object handle>,<data handle>, <window instance
handle>).

Example of the API callback function for the Netlist dialog options window:

cnexNetlistDialogOptions_cb(buttonH, mainDlgH, winInst)

• The first argument passed is the handle of the object that initiated the callback
function. For this function, the object is the Modify Option List button.

• The second argument in an API callback is a data item. For this function, the
handle to the Front End Flow netlist dialog has been passed.

• The third argument for a LAPI callback is a window instance handle. Dialogs
are associated to certain windows. In this case, winInst will point back to the
schematic window that was used to bring up the Front End Flow netlist
exporting dialog.

Note You must use this exact protoype.The Front End Flow netlist exporting
dialog always calls the function cnexNetlistDialogOptions_cb which always uses
the same three arguments.

Note To get further information on LAPI, contract Agilent for a special
training class with Agilent Technologies Solution Services group.
5-4 Overriding the cnexNetlistDialogOptions_cb Function

Creating a Dialog Box

The command api_dlg_create_dialog creates a new dialog box and returns the dialog
handle. The command has eight arguments. You must specify the first two, the
remaining six are optional.The optional arguments specify elements of the dialog box.

Example of the Function Call

decl dlgH=api_dlg_create_dialog (dlgName, winInst, ...<the six optional
arguments>)

Required Arguments

dlgName

This argument assigns the name for the dialog box.

winInst

This argument specifies the window instance. Use the instance passed in the
cnexNetlistDialogOptions function.

Optional Arguments

API_RN_CAPTION

This specifies the text displayed in the dialog banner. It must be a text value.

Usage: API_RN_CAPTION, “My Option Dialog”,

API_RN_ORIENTATION

This specifies whether the dialog is laid out horizontally or vertically. Horizontal
layout means that when you specify a new dialog item it is placed next to the prior
dialog element. Vertical layout means it is placed below.

A vertical layout is recommended for a dialog.

• Specify API_RV_VERTICAL for a vertical layout.

• Specify API_RV_HORIZONTAL for a horizontal layout.

Usage: API_RN_ORIENTATION, API_RV_VERTICAL
Overriding the cnexNetlistDialogOptions_cb Function 5-5

Setting up GUI Options
API_RN_DEFAULT_OPTIONS

This allows you to specify what table options the dialog box elements inherit from the
parent dialog.

It is recommended to always specify this as API_RV_TBL_LEFT.

Usage: API_RN_DEFAULT_OPTIONS, API_RV_TBL_LEFT,

API_RN_TBL_OPTIONS

This specifies the table options for the dialog box. Dialog box elements also inherit
these options.

It is recommended to use API_RV_TBL_LK_HEIGHT|API_RV_TBL_SM_HEIGHT.
This forces the dialog to use the smallest height possible, and does not stretch dialog
elements to fit the dialog space.

Usage: API_RN_TBL_OPTIONS,API_RV_TBL_LK_HEIGHT|API_RV_TBL_SM_HEIGHT,

API_RN_RESIZE_MASK

This specifies the resizing mask.

It is recommended to specify
API_RV_DLG_MIN_WIDTH|API_RV_DLG_MIN_HEIGHT, so that the dialog is
created with the minimum possible width and height.

Usage: API_RN_RESIZE_MASK,API_RV_DLG_MIN_WIDTH|API_RV_DLG_MIN_HEIGHT,

API_RN_MODE_TYPE

This specifies whether the dialog is modal or non-modal.

For the Front End Flow options dialog box specify API_RV_MODAL_DIALOG so that
the dialog box is modal.

Usage: API_RN_MODE_TYPE, API_RV_MODAL_DIALOG,

Creating Dialog Box Elements

Dialog box elements are objects. Dialog box elements, or objects, include labels and
tables, which can also be used to help make command buttons.The Layered API
functions used to create dialogs and dialog elements are described in Appendix B,
Layered API Functions.

The command to create dialog elements is the Layered API function
api_dlg_create_item.
5-6 Overriding the cnexNetlistDialogOptions_cb Function

Syntax

api_dig_create_item(name, type, [resource, value, ...], [itemH, ...])

• The first argument is the name of the dialog element. Use a unique name for
the dialog so that you can retrieve the element by name in other code.

• The second argument is an enumerated integer that defines the type of dialog
component. There is a list of the dialog element types in “Layered API Dialog
Elements” on page B-4.

• The last argument space, [itemH, ...] is used an option argument used for
placing children in the dialog object, if that object supports them. It is not
treated in this discussion.

• The third argument space, [resource, value, ...], defines the dialog elements or
objects. Some examples of making dialog elements follow.

An Empty Label Dialog Element

To create an empty line label, in order to space a dialog out vertically, the following
code could be used:

api_dlg_create_item(“labelSpace1”, API_LABEL_ITEM, API_RN_CAPTION, ““)

Table Elements

Use table elements when you want to group several elements of a dialog box on the
same row, or several elements in the same column.

There are three basic steps to defining table elements using the api_dlg_create_item
call.

1. Set the orientation of the table elements.

If you items to appear in the same table row, specify a horizontal orientation by
entering API_RN_ORIENTATION, API_RV_HORIZONTAL. If you want
elements to be in a column, specify a vertical orientation by using
API_RN_ORIENTATION, API_RV_VERTICAL.

2. Add dialog elements to the table.

3. Put a framing box around the dialog.

This increases legibility. If you specify API_RN_CAPTION, the table will
automatically have a framing box drawn around it. If API_RN_CAPTION is
Overriding the cnexNetlistDialogOptions_cb Function 5-7

Setting up GUI Options
empty, you must specify API_RN_FRAME_VISIBLE, TRUE to have the
framing box drawn.

The following code creates a table that contains OK and Cancel command buttons at
the bottom of the dialog box:

api_dlg_create_item ("actTabl", API_TABLE_GROUP,API_RN_ORIENTATION,
API_RV_HORIZONTAL,API_RN_EQUALIZE_ALL, TRUE,API_RN_DEFAULT_OPTIONS,
API_RV_TBL_FIX_SIZE,API_RN_TBL_OPTIONS,API_RV_TBL_FIX_HEIGHT,
pbOkay = api_dlg_create_item ("pbOkay", API_PUSH_BUTTON_ITEM,
API_RN_CAPTION, "OK"),
pbCancel = api_dlg_create_item ("pbCancel", API_PUSH_BUTTON_ITEM,
API_RN_CAPTION, "Cancel")
)

Figure 5-1. The Result of the Call to the api_dlg_create_item Function

• The orientation of the table is set to API_RV_HORIZONTAL, which causes the
two command buttons to be placed on the same row.

• Two buttons are created in the table by making calls to api_dlg_create_item.

• The variables pbOkay and pbCancel are set as the return values of
api_dlg_create_item.

Adding Callback Functions to Dialog Elements

Callback functions add an action to the dialog elements or objects. For example, if you
click on the OK button, you want a callback function to be executed that will save the
options and dismiss the dialog box.

The command to create dialog elements is the Layered API function
api_dlg_add_callback.

Syntax

api_dig_add_callback(itemH, functionName, callbackType, callabckData)

Example

This api_dig_add_callback function adds action to the OK command button object
created on page 5-7. The OK action saves the options and dismisses the dialog.
5-8 Overriding the cnexNetlistDialogOptions_cb Function

api_dig_add_callback(pbOkay, “cnexOptionDialogOkay_cb”,
API_ACTIVATE_CALLBACK, list(dlgH, tool))

• The first argument is the handle to the dialog element to which you want to add
the action. The variable pbOkay contains the handle to the OK command button
item.

The pbOkay handle is the first argument passed passed to the callback function
specified in the second argument.

Note You cannot specify the text name of your dialog item as the first
parameter. Layered API functions will not automatically search for your dialog
element in memory based on the name.

• The second argument is a string value that designates the name of the callback
function to be called when the object is activated. In the example it is
cnexOptionDialogOkay_cb.

• The third argument is an enumerated integer that specifies how the object is
activated. Each Layered API dialog element supports different triggers.

In the example, API_ACTIVATE_CALLBACK is specified for the pbOkay
button. The callback function is activated whenever the OK command button is
clicked.

Note Refer to “Layered API Dialog Elements” on page B-4 for more
information on which triggers are available for certain dialog elements.

• The final argument is a pointer to an AEL data list that is the second argument
passed to the callback function.

The data list contains dlgH, which is a handle to the option dialog, and tool,
which is a variable that is set when you choose the tool for this dialog. You can
retrieve the values in this list with the following code which uses the nth
function:

defun cnexOptionDialogOkay_cb(buttonH, cbData, winInst)

{

 decl dlgH=nth(0, cbData);
Overriding the cnexNetlistDialogOptions_cb Function 5-9

Setting up GUI Options
 decl tool=nth(1, cbData);

.

.

.

}

Displaying the Dialog

After the dialog has been created, and all of the callback functions have been added to
the dialog, the dialog can be displayed using the following command:

api_dlg_manage(dlgH)

This should be the last function call.The dialog box is modal, therefore no commands
will be executed after the api_dlg_manage function has been called. All callbacks
must be set up prior to displaying the dialog.

Closing the Dialog

The options dialog box is modal. A modal dialog box takes the input focus and does
not allow you to work on anything else until the dialog box is dismissed.

The command to close the dialog box is the function api_dlg_unmanage.

Syntax

api_dlg_unmanage(dlgH)

The one argument, dlgH, is the handle to the dialog box to be closed.

The dialog box does not allow you to type in commands, therefore you must set up one
or more dialog elements to have callback functions that will call the
api_dlg_unmanage command. Typically, you use the OK and Cancel buttons for this.

The following code adds the close action to the Cancel command button in the dialog
elements created in “Table Elements” on page 5-7:

api_dlg_add_callback(pbCancel, “cnexOptionDialogCancel_cb”,
API_ACTIVATE_CALLBACK, dlgH);

This causes the function cnexOptionDialogCancel_cb to be called any time the Cancel
button is clicked. The data argument passed to the function
cnexOptionDialogCancel_cb will be the dialog handle.
5-10 Overriding the cnexNetlistDialogOptions_cb Function

The definition for the cancel function is then set up as follows:

defun cnexOptionDialogCancel_cb(buttonH, dlgH, winInst)
{
api_dlg_unmanage(dlgH);
}

When the api_dlg_unmanage function is called, the dialog box is closed.

Saving Options to a Configuration File
Once the user has chosen the options they wish to set, perform the following steps:

1. Make certain that the global options list gets set up properly.

This is discussed in “Option List Global Variable” on page 5-1.

2. Store the settings into a configuration file.

Note If stored in the configuration file, the user will not need to set up the
options each time they make a netlist.

Getting the Values of the Dialog Box Elements

You need to be able to get the value of a dialog box element in order to know the state
of that element. For example, the value of a text box is the text that has been entered.
The value of an option button object, or element, tells you if that button has been
selected or not.

There are two parts to getting the value. First, you must get the handle of the object
whose value you want. The Layered API function for this is api_dig_find_item.
Second, after you have the object handle, you must get the value from the object. The
Layered API function for this is api_dig_get_resources.

Note Once you get the object handle, you can also use it in other commands such as
api_dlg_add_callback.

The syntax for the function to get the object is as follows:

api_dig_find_item(dlgH, name)
Saving Options to a Configuration File 5-11

Setting up GUI Options
• The first argument, dlgH, specifies that you are requesting the object handle.

• The second argument, name, specifies the name of that object.

The syntax for the function to retrieve the value is as follows:

api_dig_get_resources(itemH, resource, value)

The first argument, itemH, is the object handle.

The second argument, resource, an an enumerated integer value that designates the
resource value you want to retrieve.

The third argument, value, gets the value of the specified resource by going to the
address of the value.

Note AEL, like C, uses an ampersand (&) prefix to designate the address of a
variable.Thus, to pass the address of a variable to a function, you use the code &name
and not name.

Retrieving the Value of a Dialog Box Element

The following code retrieves the toggle state an option check box named bipolar:

decl itemVal;
decl bipolarH=api_dlg_find_item(dlgH, "bipolarH");
api_dlg_get_resources(bipolarH, API_RN_TOGGLE_STATE, &itemVal);

• In the first line, the itemVal variable is declared which will hold the value
retrieved from the dialog element.

• In the second line, the handle to the dialog object is retrieved using the
api_dlg_find_item function.

When the bipolar check box item was created, it was named bipolarH. This is
the name used to retrieve the handle to that object. Once the handle to the
object has been retrieved, that handle is used to get the value of
API_RN_TOGGLE_STATE by using the function api_dlg_get_resources.

• In the third line, the address of itemVal is passed into the function. After the
function returns, the variable itemVal can be accessed to determine whether the
check box was checked or not.
5-12 Saving Options to a Configuration File

Writing a Value to a Configuration File

You can save retrieved values to a configuration file by using the setenv command.
This command writes a configuration file in the current working directory. For ADS,
the current working directory is always the directory that contains the currently
open project.

The setenv command has four arguments:

• The first argument is the name of the configuration variable. The name you use
must match the name of the object from which you retrieved the value. In the
example above, the name is bipolar. The argument must be a text string.

• The second argument is the value. In the above example, the value is stored in
itemVal. This value must be a string.

Use the is_string function to determine if the value is a string.

If the value is not a string, use the identity_value function to convert it to a
string.

• The third argument is the name of the configuration file where you want to
store the value. This is a text name, and should not include the .cfg extension.
The extension is added automatically.

• The fourth argument specifies the directory where you want to save the
configuration file. However, for options, it is recommended that you save the file
in the directory that contains the current object. The file is stored there
automatically if you leave out this argument. Therefore, do not fill in this space.

Note If the configuration file does not exist, setenv will make it automatically.
If a value already exists in the configuration file, the setenv command will
overwrite it.

Writing a Value to a Configuration File

The code in “Retrieving the Value of a Dialog Box Element” on page 5-12 got the state
of the bipolar check box. The code below stores that value in a configuration file using
the name bipolar.

if(is_string(itemVal))
setenv(“bipolar”, itemVal, "dracula");
else
Saving Options to a Configuration File 5-13

Setting up GUI Options
setenv(“bipolar”, identify_value(itemVal), "dracula");

The first line uses the is_string function to see if itemVal is a string. In this case it is
not because it is a Boolean value, a integer value of either 0 or 1.

Control branches to the last line. The setenv command goes to the object named
bipolar. The command then reads the value in itemVal and, using the identify_value
command, converts it to a string.

The command sends the value to a configuration file named dracula. The command
automatically adds the file extension .cfg which denotes a configuration file.

Summary
These are the steps to make your own custom options dialog:

1. Create an cnexOptions.ael file in a directory appropriate for your tool.

2. Write a function that can retrieve option settings from an ADS configuration
file.

3. Write a customized cnexNetlistDialogOptions_cb function.

4. Write a function that can save the data in the dialog to an ADS configuration
file.

5. Write a function that can close the dialog.
5-14 Summary

Chapter 6: Hspice Netlister Example
This chapter provides an example for creating a custom dialect from the base netlist
format shipped with Front End Flow. The HSpice netlist code configured in this
example is shipped with Front End Flow. Many of the functions in Front End Flow
are provided in source form to allow you to create your own netlist dialect by
modifying some key functions.

To create a custom dialect, perform the following steps:

1. “Creating the New Dialect Directories and Files” on page 6-1.

2. “Modifying the Configuration File as Needed” on page 6-3.

3. “Modifying the Netlisting Functions as Needed” on page 6-4.

4. “Creating Component Definitions” on page 6-11.

5. “Verifying the Netlist” on page 6-22.

Creating the New Dialect Directories and Files
The first step for making a new netlisting dialect is to create the directories so that
Front End Flow recognizes the new dialect.

As was noted in “Adding a Tool” on page 1-9, Front End Flow checks the variable
CNEX_COMPONENT_PATH to locate the Front End Flow tools. Adding in an
HSpice directory in one of the component path directories allows Front End Flow to
recognize the new HSpice dialect.

Adding a new dialect requires the following three items:

• The component definitions

This requires making a component definition directory.

• Creating or overriding AEL definitions

This requires making a code directory to contain the AEL files.

• Writing a configuration file

This requires making a new configuration file that sets global netlisting
variables different from the default settings.
Creating the New Dialect Directories and Files 6-1

Hspice Netlister Example
Making the Component Directory

While the test component definitions are under development, place them in a
directory that will only be visible to the developer. To do this, put the definitions in
{%CNEX_HOME_DIR}/components.

Once the definitions are finished, move them to another directory, such as
{%CNEX_CUSTOM_DIR}/components, or a design kit directory. You could also add
your own directory to CNEX_COMPONENT_PATH by editing the CNEX.cfg file.
This allows you to development in your own directory, for example,
$HOME/development/netlist_exp/components/{%CNEX_TOOL}.

For this example, an HSpice directory is created in
$HOME/hpeesof/netlist_exp/components which corresponds to
{%CNEX_HOME_DIR}/components. Place all of the test component definitions in
this directory. When the development is finished, move them to an appropriate
central directory.

Creating the Source Code Directory

In addition to creating component definitions, there are functions you must override
to make the HSpice netlist dialect work. Put the AEL functions to override in a file in
their appropriate home directory. The configuration variable
CNEX_COMPONENT_PATH defines where Front End Flow will look for AEL files.
That location is {%CNEX_HOME_DIR}/ael/{%CNEX_TOOL}. You are developing a
CNEX_TOOL called HSpice. Therefore, you make a directory called HSpice at
$HOME/hpeesof/netlist_exp/ael.

Creating the HSpice Configuration File

In addition to overriding functions and creating component definitions, you must also
make a configuration file for HSpice. CNEX_COMPONENT_PATH searches for
component files with the name type CNEX_config.{%CNEX_TOOL}. We have been
using home directories to place our development files, so use
{%CNEX_HOME_DIR}/config for the location for making the new configuration file.

It is easier to modify an existing configuration file than to write a completely new
one. Use CNEX_config.dracula as the basis for the new HSpice configuration file
because Dracula uses HSpice style netlists. Copy CNEX_config.dracula from
{%LVS_INSTALL_DIR}/config to {%LVS_HOME_DIR}/config/CNEX_config.HSpice.
6-2 Creating the New Dialect Directories and Files

This satisfies the need to have a configuration file with the name
CNEX_config.{%CNEX_TOOL} so that CNEX_COMPONENT_PATH can find it.

Modifying the Configuration File as Needed
The netlisting configuration file is discussed in “CNEX_config Configuration File” on
page 2-7. Compare each of the configuration variables with the with the
documentation of the tool you are supporting to determine which, if any, of the
configuration variables need to be modified.

Refer to Chapter 2, Configuration Files and use the following example as a checklist
for your custom dialect. This example uses HSpice as the custom dialect.

1. Is HSpice dialect case sensitive?

No. Set CASE_INSENSITIVE_OUTPUT to TRUE.

2. Is a component instance separator needed?

No. Leave it blank.

3. Are there any nodes in ADS that should be set to equivalent nodes in HSpice?

No. Therefore do not add EQUIV lines to the file.

4. Are there any expressions in ADS that are different in HSpice?

Yes. you need to map the ADS expressions to the corresponding HSpice
expressions. For example, the function ln is log in HSpice, so you map the
expression as EXPRESSION_MAPPING = ln log. Also, the ADS function log is
equivalent to HSpice’s log10. Map that expression as
EXPRESSION_MAPPING = log log10. Map any other expressions required by
the tool you are using.

5. Does HSpice require an expression delimiter?

Yes. HSpice expressions are required to be enclosed in single quote marks. Set
EXPRESSION_START to ‘, and also set EXPRESSION_END to ‘.

6. Does HSpice have a particular node that is ground?

Yes. Node 0 is always ground in HSpice. Set the variable GROUND to 0.

7. What character is used to designate a comment line for HSpice?

HSpice uses the * character at the start of a line to designate the line as a
comment. Set LINE_COMMENT to *.
Modifying the Configuration File as Needed 6-3

Hspice Netlister Example
8. What is the continuation character?

The continuation character in HSpice is +. It is placed at the beginning of the
following line. Set the variable LINE_CONTINUATION_CHARACTER to +.
Because the continuation character must be at the beginning of the following
line, set LINE_CONTINUATION_MODE to 0.

9. Does HSpice have a maximum line length?

HSpice input line can be a maximum of 1024 characters. Set
MAX_LINE_LENGTH to 1024.

10. Does HSpice allow numeric node names?

Yes. However, names that begin with a number ignore any alphabetic
characters after the numbers. This is not true in ADS. Therefore, use numeric
node names that are prefixed. Set the NUMERIC_NODE_PREFIX to _net in
order to be consistent with ADS.

11. Does HSpice support engineering notation?

Yes. Since engineering format is easier to read, set SCALAR_TO_SCIENTIFIC
to FALSE.

12. Do the HSpice engineering notations match the ADS engineering notations?

Not in all cases. HSpice does not list their scaling factors in the documentation.
This is something that must be determined by experimentation.

Once all of the configuration variables are set, you have the basis for your custom
netlist exporter. Next, you need to customize the functions so they will work properly
for your tool.

Modifying the Netlisting Functions as Needed
A good approach to modifying the netlisting functions is to create one component
definition file utilizing each function that you are going to modify. This will allow to
test each function as you write it.

In “Creating the Source Code Directory” on page 6-2, we specified that
{%CNEX_HOME_DIR}/ael/HSpice is the development directory. We will now make
a new file, cnexNetlistFunctions.ael, in that directory. This serves as the
customization file for netlisting functions. Once the file is created, it will always be
loaded as long as HSpice is selected as the netlisting tool.
6-4 Modifying the Netlisting Functions as Needed

The modification process consists of the following steps:

1. “Modifying Instance Functions” on page 6-5.

2. “Modifying Header and Footer Functions” on page 6-9.

To test your component definition file perform the following steps:

1. With ADS running, place a component in the schematic.

2. Create a Front End Flow netlist to test your function.

The function file is always reloaded each time a netlist is created.

3. Test the function as appropriate for the function, for example, review the netlist
or simulate a circuit.

Modifying Instance Functions

Front End Flow provides eight instance netlisting functions.

To determine what the current function outputs and if modification is required,
perform the following steps:

1. Place ADS standard components on a schematic and netlist them with the
Dracula tool selected.

2. Check the output to determine if modification is required.

3. Determine if the component configuration or the function requires modification.

Note If you are not certain if the component or the function requires
modification, modify the configuration first. It is easier to modify components.

Before testing, start ADS and create a new project so that no pre-existing information
is used. For the example in this chapter, a new project, HSpiceSetup_aprj, is created.
Next, a new design is created with the name test1.

The cnexNetlistInstance Function

The next step is to find out what the current function exports for a known device and
what HSpice needs for that device. For simplicity, the following example uses a
capacitor as the template component.
Modifying the Netlisting Functions as Needed 6-5

Hspice Netlister Example
To get an initial HSpice definition for the component, copy the Dracula definition into
the HSpice components directory.

1. Place a capacitor, component C, in the ADS test1 schematic.

2. Consult the HSpice documentation. According to the documentation, the
following is the general format for an element:

elname <node1 node2 ... nodeN> <mname>

+ <pname1=val1> <pname2=val2> <M=val>

The following is the specific format for a capacitor:

Cxxx n1 n2 <mname> <C=>capacitance <<TC1=>val> <<TC2=>val>

+ <SCALE=val> <IC=val> <M=val> <W=val> <L=val>

+ <DTEMP=val>

3. Find out what the current function returns. Bring up netlisting dialog box, and
select HSpice as the tool. Select the View netlist file when finished check box,
and the create a new netlist by clicking OK. The resulting netlist line for the
capacitor is as follows:

cc1 _net2 _net1 C=1pF

This matches the HSpice requirement.

You may want to use more complex components to verify more outputs. However, in
this example, the cnexNetInstance function output is the same as that required by
HSpice. Therefore, for the capacitor component, HSpice does not need an override of
the cnexNetlistInstance function.

The cnexSubcircuitInstance Function

To test the outputs of this function, first make a subcircuit, then follow the procedure
below.

Note This example shows what to do if your first test case does not show needed
parameter output information.

Make a subcircuit by placing two ports in test1 design and connecting them to the
capacitor that was placed to test the cnexNetlistInstance function.
6-6 Modifying the Netlisting Functions as Needed

1. Create a symbol by using View > Create/Edit Schematic Symbol from a schematic
window.

This creates a new two port symbol for the test1 component.

2. Save that design and then create a new design, test2.

3. Place one instance of test1 in the test2 design.

4. Check the HSpice documentation for the definition of a subcircuit. According to
the HSpice manual, the following is the definition for a subcircuit call:

Xyyy n1 <n2 n3 ...> subnam <parnam= val ...> <M= val>

The subcircuit does not have parameters; therefore, the test will not give you
output information. You must add a parameter to the test.

5. Select File > Design Parameters from the schematic window.

The Design Parameters dialog will appear.

6. Select the Parameters tab, and create a new parameter called C with a default
value of 1 p. Set the parameter type to Capacitance. Add the parameter and
save the design.

7. Go back to the top level, delete the instance of test1 and place it again on the
schematic. It now has a parameter, C.

8. Netlist the design. The result for the test1 instance is as follows:

xx1 _net1 _net2 test1 C=1p

This output matches the HSpice requirements, so you do not need to make any
changes.

The cnexGlobalNodeInstance Function

To place a GlobalNodeInstance, select the menu option Insert > Global Node .

Add a new global node, g1, to the global node list, and put a wire label on one of the
pins of the test1 instance.

According to the HSpice manual, global nodes are designated in HSpice by outputting
a .global directive. Thus, to netlist the GlobalNodeInstance correctly, it must create a
.global option in the HSpice netlist.

After placing the global node and creating a new netlist, the result is as follows:

.global g1
Modifying the Netlisting Functions as Needed 6-7

Hspice Netlister Example
This matches the HSpice requirement, so you do not need to add any changes for
cnexGlobalNodelInstance in the custom cnexNetlistFunctions file for HSpice.

The cnexVariableInstance Function

1. Place a variable instance by inserting a VAR component.

2. Set up three variables in the VAR component: C1=2p , C2=3p, and C3=C1+C2.

To create a parameter, the HSpice manual states to use the following syntax:

.PARAM <SimpleParam> = <value>

.PARAM <AlgebraicParam> = ’SimpleParam*8.2’

3. A netlist is created and gives the following results:

.param C1=2p

.param C2=3p

.param C3=’C1+C2’

This is what HSpice expects. Again, the function does not have to be overridden.

The cnexShortInstance Function

Do not override this function.

It takes the output of multiple nodes and replaces all future occurrences of the nodes
with one equivalent node, usually the first node of the component.

Use this function on tline components, if you want to use the HSpice transmission
line component.

The cnexShortMultiportInstance Function

Do not override this function.

It will take the instance list, match the pairs of nodes to each other, and short-circuit
the node pairs. The first node in the pair becomes the name used whenever the
second node in the pair is encountered anywhere in the current subcircuit.

The cnexUnknownInstance Function

You do not need to override this function.
6-8 Modifying the Netlisting Functions as Needed

This function outputs a comment for a component that does not have an HSpice
definition.

Modifying Header and Footer Functions

So far in the example none of the default instance netlisting functions were incorrect
for the HSpice netlister. The cnexNetlistFunctions.ael file is still empty, except for the
comment line that has been placed to indicate that this file is customization for
HSpice.

Next are the header functions. These functions create the lines output at the
beginning of the netlist, the beginning of the top cell, and the beginning of each
subcircuit. The footer functions take care of what is output at the end of the netlist,
the end of the top cell, and the end of each subcircuit definition.

The cnexOutputSubcircuitHeader Function

This function returns the subcircuit definition line.

The HSpice manual specifies that a proper definition as follows:

.SUBCKT subnam n1 < n2 n3 ...> < parnam=val ...>

The test2 circuit already has a subcircuit placed in it, test1. The netlist you generated
gives the following for the test1 subcircuit definition:

.subckt test1 _net3 _net1 C=1p

The output is correct for HSpice: the .subckt was output, the nodes are there, and the
parameter definition is correct.

The cnexOutputSubcircuitFooter Function

This function outputs the end of a subcircuit definition.

The HSpice manual specifies the following end of a subcircuit definition:

.ENDS < SUBNAM>

The netlist generated from testing using cnexOutputSubcircuitHeader, returns the
following:

.ends test1

This is a proper subcircuit ending for HSpice. This function does not need to be
changed.
Modifying the Netlisting Functions as Needed 6-9

Hspice Netlister Example
The cnexOutputTopcellHeader Function

The top cell header appears at the beginning of the output for the top level circuit. In
this example, test2 is the top cell. For HSpice, nothing needs to be set for a top cell.
Components can be placed outside of a subcircuit definition, and HSpice recognizes
them as being in the top cell.

To run a test, you need to have simulation directives in the top level. If you look at
the netlist, you can see the following subcircuit definition for the top cell:

.subckt test2

This is valid for Dracula, but not for HSpice. This function needs to be changed so it
works for HSpice.

Look in the file cnexNetlistFunctions.ael in {%LVS_INSTALL_DIR}/ael. The current
function definition is as follows:

defun cnexOutputTopcellHeader(designName, dsnH)
{
 return(cnexOutputSubcircuitHeader(designName, dsnH));
}

The Dracula code calls the cnexOutputSubcircuitHeader function so that it creates
the top cell as if it were a subcircuit. HSpice does not want any top cell output, so
write a new function in the custom cnexNetlistFunctions.ael file that looks like this:

defun cnexOutputTopcellHeader(designName, dsnH)
{
 return("");
}

This function returns an empty string instead of a subcircuit top cell header.

The cnexOutputTopcellFooter Function

The top cell footer is output after all of the instance definitions for the top cell have
been created. In the example, test2 subcircuit is the top cell. Checking the netlist file,
you see that there is no top cell header for test2 because of the new
cnexOutputTopcellHeader. However, there is still an end directive for test2. The
cnexOutputTopcellFooter function must be overridden so that there is no footer.

Examine the original code. The default definition is as follows:

defun cnexOutputTopcellFooter(designName, dsnH)
{
 return(cnexOutputSubcircuitFooter(designName, dsnH));
}

6-10 Modifying the Netlisting Functions as Needed

For this example, put in spacing after the end of the top cell and no end subcircuit
definition. To do this, the new function definition becomes the following:

defun cnexOutputTopcellFooter(designName, dsnH)
{
 return("\n");
}

This overrides the default function so that an empty new line is output at the end of
the top cell instances.

The cnexExportNetlistHeader Function

The netlist header function outputs the first lines of the netlist. It takes care of
outputting options, including files and includes any comments. The default of this
option already supplies the correct output for HSpice. Therefore, you do not need to
change it.

The cnexExportNetlistFooter Function

This function is called to output lines that appear at the end of the file. For HSpice,
the netlist places an .end directive at the end of the file. Anything after the .end is
treated as comments. The default cnexExportNetlistFooter function places an .end
directive. Therefore, you do not need to change the function.

Creating Component Definitions
Now you should set up all of the components needed for your process and your
simulation needs. This chapter deals with components that are delivered with ADS.
Your foundry kit components should fall into these categories. Because ADS has
hundreds of components. This chapter shows only one example in each component
category.

Primitive Components

A primitive component is a component that is netlisted and uses one of the built-in
simulator components. It has no hierarchy and does not need a model because the
parameters of the component represent all of the information needed to define the
component.

This example uses a capacitor as a primitive. Before you start, gather the following
information:
Creating Component Definitions 6-11

Hspice Netlister Example
• The simulator component used by the component in ADS

• The pin count and order used by the component in ADS

• The parameters that the component has in ADS, and whether they are netlisted
or not

The Dracula definition is not identical to the HSpice definition.

You have the following information:

• It netlists as a capacitor.

• The pins are 1 and 2, and the order is not important.

• The parameters are C, Temp, Tnom, TC1, TC2, wBV, InitCond, Model, Width,
Length, and _M.

Consult the HSpice documentation to find the following capacitor primitive
definition:

Cxxx n1 n2 <mname> <C=>capacitance <<TC1=>val> <<TC2=>val>
+ <SCALE=val> <IC=val> <M=val> <W=val> <L=val>
+ <DTEMP=val>

or

Cxxx n1 n2 <C=>’equation’ <CTYPE=val> <above options...>

or a polynomial form:

Cxxx n1 n2 POLY c0 c1... <above options...>

The second and third definitions do not match the ADS ones. The ADS capacitor is set
up to match the first definition.

Now that the target format is known, you can edit the definition. In Chapter 3,
Component Definitions, two ways of editing a component definition are discussed,
using the GUI and editing the file directly. If you have many components to edit, it is
easier to edit the text files directly. The GUI is best if you edit one component at a
time.

This chapter uses the text editor approach. Open the file C.cnex in a text editor.

Modifying the Component Definition Parameters

Set up the function. For the example in this chapter, based on the functions available
and the fact that this is not a subcircuit, cnexNetlistInstance is the right function to
use.
6-12 Creating Component Definitions

In HSpice a capacitor device name must be prefixed with a C. The Component_Name
field can also be left unchanged, because it is already set to C.

Because this is an ideal capacitor, it does not matter which terminal is negative or
positive. Based on the ADS symbol, pin 1 is the negative terminal. If polarity is
important, you must change the pin association.

Now, you must find out which parameters to netlist, how to map their names into the
proper HSpice names, and if any value mapping needs to be done for the parameters.
Base this on reading the manual and comparing the parameters for ADS and HSpice.

Additionally, you need to determine which parameters are important for your design.
If temperature is not important, do not output them.

HSpice requires the parameters output in the following order:

Model, C, TC1, TC2, SCALE, IC, M, W, L, and dtemp

Of these parameters, all must be explicitly named, except for Model, which does not
have a name, and C, where the name is optional.

ADS does not have an equivalent for the parameter SCALE. Discard that parameter.
ADS has a parameter, wBV, which does not correspond to any HSpice parameter. Do
not use it.

The parameter dtemp, the difference in component temperature from circuit
temperature, is not the same as Temp, which is the absolute temperature of the
component. You must write a function to output the dtemp parameter.

The ADS parameters InitCond, Width, Length, and _M have definitions that match
HSpice parameters IC, W, L, and M, but have different names. You must map these
names.

The new Parameters line is set to the following:

Parameters = Model C TC1 TC2 InitCond _M Width Length Temp

Note The parameters line specifies the ADS parameter name, not the HSpice
parameter name.

The parameter Model should output without <param name>= for its value. To do this
mapping, a the following parameter name-mapping line is placed:

Parameter_Name_Mapping = Model
Creating Component Definitions 6-13

Hspice Netlister Example
Because there is only a single value, the name Model is mapped to an empty string.
This means that the function will not output a left hand side for the value.

The parameters C, TC1, and TC2 do not need to be mapped. There is nothing is put
into the file for them.

The parameters InitCond, _M, Width, Length, and Temp need to be mapped. The
following lines are added to handle these parameters:

Parameter_Name_Mapping = InitCond IC
Parameter_Name_Mapping = _M M
Parameter_Name_Mapping = Width W
Parameter_Name_Mapping = Length L
Parameter_Name_Mapping = Temp DTEMP

The ADS parameter Temp is mapped to dtemp, but their values are not identical. In
“Adding Value Mapping Functions” on page 4-2, the process for writing a value
mapping function is described. In this case, the following code returns the correct
value for dtemp. The ADS parameter value contains the absolute value temperature
value placed in ADS. The parameter -temper contains the circuit value. If you
subtract -temper from value, you get the differential temperature, the value needed
for the HSpice parameter dtemp. Set up the function to take the ADS parameter
value, and return the appropriate HSpice value to go into dtemp: as follows

defun hspiceModifyTemp(value)
{
 decl returnVal;

 returnVal=strcat("’", value, "-temper’");

 return(returnVal);
}

To make the Temp function use the value, enter the following line:

Parameter_Type_Mapping = Temp hspiceModifyTemp

The component must now be netlisted. Open test1 schematic, which already has a C
component placed.

However, if a parameter does not have a value, it will not be output. Therefore, it is
necessary to set values for all of the parameters so that they are netlisted correctly.
So, C is set to 1.0pF, Temp is set to 27, TC1 is set to .1, TC2 is set to .01, InitCond is
set to 1, Model is set to CTest, Width is set to 10u, Length is set to 10u, and _M is set
to 2. Then a netlist is created as follows:
6-14 Creating Component Definitions

cc1 _net5 _net4 Ctest C=1pF TC1=0.1 TC2=0.01 IC=1 M=2 W=10um L=10um
DTEMP=’27-temper’

This matches what the output that HSpice requires.

Components that Access Models

Most active devices and some passive devices use components that contain additional
parameters for the instance. These auxiliary parameters can be shared among all of
the various instances that are similar. These auxiliary components are called models.

Some tools, such as ADS and Spectre, treat the model component as a user defined
component. When the instance is netlisted, instead of using a component name, such
as BJT, they use the model name.

Other tools, like HSpice, specify the component name the same as they do for a
primitive. The model is just another parameter.

This is an example of setting up a tool for HSpice. Therefore there is no difference
between a component that accesses a model and one that does not.

As another example, here is how to set the ADS BJT NPN component. As you would
for a primitive, gather the following information:

• The simulator component used by the component in ADS

• The pin count and order used by the component in ADS

• The parameters that the component has in ADS, whether they are netlisted or
not

If these devices netlist differently into your tool because of the model, you should also
get the following information:

• The name of the model parameter

• The type of models that are valid for the component

For this example, you want to netlist BJT_NPN, and make it be a Gummel Poon BJT
NPN device for HSpice.

According to the HSpice manual, the following is the format for the BJT:

Qxxx nc nb ne <ns> mname <area> <OFF> <IC = vbeval,vceval>
+ <M = val> <DTEMP = val>

or

Qxxx nc nb ne <ns> mname <AREA = area> <AREAB = val>
Creating Component Definitions 6-15

Hspice Netlister Example
+ <AREAC = val> <OFF> <VBE = vbeval> <VCE = vceval> <M = val>
+ <DTEMP = val>

For HSpice, model is not a distinct element, its a parameter. This means that
cnexNetlistInstance is fine. Netlist_Function is set to cnexNetlistInstance.

The component name for an HSpice BJT component is Q, whether it is NPN or PNP.
The model designates the implanting type for the component. The Component_Name
parameter is set to Q.

The HSpice pin order in this case is collector, base, emitter, with an optional
substrate. The ADS symbol has three unnamed pins; 1, 2, and 3. The ADS symbol
graphic shows that pin 1 is the collector, pin 2 is the base, and pin 3 is the emitter.
Since we need HSpice’s node order to be collector, base, emitter, the Terminal_Order
variable is set to 1 2 3.

The ADS symbol has the parameters Model, Area, Region, Temp, Mode, Noise, and
_M. Mode specifies whether the device is linear or non-linear. Noise specifies whether
the device is a noise generation source. HSpice does not have an equivalent to either
of these parameters, so they’re both dropped.

The rest of the parameters do match HSpice parameters, so the parameters value is
set to Model Area Region _M Temp to match the order that HSpice specifies in its
manual.

In HSpice, the Model is output as a value only, so a line is put in to eliminate the
parameter name, Parameter_Name_Mapping = Model.

The chapter example outputs the left hand side of the area value for readability.
Since HSpice is not case sensitive nothing is needed for the area parameter.

Region is mapped to the HSpice parameter that designates whether the device is on
or off for DC analysis. ADS allows four settings for this value, 0 means the device is
off, 1 means the device is on, 2 means the device is reverse biased, and 3 means the
device is saturated. The last two are meaningless to HSpice, so these values need to
be mapped. Additionally, HSpice does not want integer values, it wants the value to
be a text value on or off. We need a value mapping function for this parameter.

First, the parameter name is mapped so that it is not be output by creating a line as
follows:

Parameter_Name_Mapping = Region

Next, a line is created for the value mapping by placing the following line:

Parameter_Type_Mapping = Region hspiceModifyRegion.
6-16 Creating Component Definitions

The function hspiceModifyRegion must now be created. Copy the value mapping
function prototype into the file cnexNetlistFunctions.ael. The decision here is what to
do with the extra values ADS supports. The default value is that the device is on for
both ADS or HSpice. So if the value is empty or NULL, the function will return an
empty string. For simplicity, set them so that if the Region is 1, the function will
return the value on. This yields the following function:

defun hspiceModifyRegion(value)
{
 decl returnVal;

 if(!value)
 returnVal="";
 else if(value == 1)
 returnVal="on";
 else
 returnVal="off";

 return(returnVal);
}

The _M parameter needs to be mapped to the parameter M. This is done with the
following line:

Parameter_Name_Mapping = _M M

The Temp parameter is mapped to DTEMP, and a value mapping function is specified
for Temp, hspiceModifyTemp. This time, the function has already been written, so it
is a matter of adding the following lines to the file:

Parameter_Name_Mapping = Temp DTEMP
Parameter_Type_Mapping = Temp hspiceModifyTemp

This completes the component definition. The circuit test3 has a BJT_NPN
component and some basic biasing components around it, such as resistors and
capacitors. After setting reasonable values for all of the parameters and netlisting,
the instance line for the BJT_NPN component is as follows:

qbjt1 _net107 _net108 _net109 BJTM1 Area=1 off M=1 DTEMP=’27-temper’

This is the correct output for HSpice.

Model Components

A model component is a schematic instance that, when netlisted, becomes a model
device that other instances in the circuit can access. IC simulators often use model
Creating Component Definitions 6-17

Hspice Netlister Example
components. Those simulators also support netlist fragments, pieces of a netlist
include in the final netlist which are available only through library calls or include
statements.

The ADS simulator, which does not support netlist fragments.

If you use ADS model components in your circuit, the recommendation is to create
netlists for HSpice that contain the models you need. Then set up all of the ADS
model components so they netlist using the function cnexIgnoreInstance. In “Setting
Up Automatically Included Files” on page 4-1, there is a description that shows how
to get your netlist fragments included in the final netlist.

Simulation Components

It is usually better to include a file that contains the simulations you wish to perform
in HSpice instead of an ADS simulation component. Many ADS simulation
components do not map into other simulators.

However, for certain simulations, such as DC, you can set up a simulation. The
following is an example of setting up a DC component to netlist for HSpice.

Since we know what the component is, check to see what HSpice needs in order to
designate a simulation.

When a DC simulation is done, you are trying to find the operating point of the circuit
at the time index of zero. To do this in HSpice, the correct line is as follows:

.OP <format> <time> <format> <time>

Additionally, to perform variable sweeps, you need a DC line as follows:

.DC var1 start1 stop1 incr1 <var2 start2 stop2 incr2 >

In ADS, the operating point calculation and the variable sweeps are both potentially
designated in a single DC component. This is a case of needing two lines of output for
a single component.

The only way to figure out the right parameter name is to look at the netlist, and then
use the simulator’s help capability.

First, generate an ADS netlist, and identify the components line by looking for its
instance name. The string in front of the instance name is the device that the
component is netlisted as, in this case, DC. To get help on the DC component from the
simulator, type in hpeesofsim -help DC in a command line terminal. This will give you
6-18 Creating Component Definitions

the parameters that are valid for the DC device, and a brief description of each
parameter.

For the DC operating point, the parameter name in the simulator is DevOpPtLevel.

If DevOpPtLevel is placed in the component definition, it will be possible to retrieve
its value using the function cnexGetParameterValues. The value is examined, and
either NONE, BRIEF, or ALL is output, based on the value that was returned. If
there was no value, nothing is output at all.

The sweep line is determined by looking at the value of SweepVar, which will specify
whether a .DC sweep will need to be output.

The sweep plan has the variable names Start, Stop, and Step. Assume these are the
right parameter names, and set these up on the parameters line along with
SweepVar. The function will then have to step through and grab these values from
the parameter list that was returned from cnexGetParameterValues.

Since there is a known set of values set, a while loop is set up to output the remaining
three parameters. This yields the following component definition file for DC.cnex:

Netlist_Function = hspiceOutputDcComponent
Component_Name =
Terminal_Order =
Parameters = DevOpPtLevel SweepVar Start Stop Step

And the following function definition was created for hspiceOutputDcComponent:

defun hspiceOutputDcComponent(instH, instRecord)
{
 /* This is a function that will specifically output a .OP and .DC
 line for HSpice from a DC component. */

 decl net=".OP";

 decl paramList=cnexGetParameterValues(instH, instRecord);
 decl paramRecord, paramValue;

 /* Get the record for DevOpPtLevel */
 paramRecord=car(paramList);
 paramValue=nth(1, paramRecord);

 paramList=cdr(paramList);
 if(paramValue)
 {
 if(paramValue == "0")
 {
 net=strcat(net, " NONE");
Creating Component Definitions 6-19

Hspice Netlister Example
 }
 else if (paramValue == "2")
 {
 net=strcat(net, " BRIEF");
 }
 else
 {
 net=strcat(net, " ALL");
 }
 }

 /* Get the record for SweepVar */
 paramRecord=car(paramList);
 paramList=cdr(paramList);

 paramValue=nth(1, paramRecord);

 if(paramValue)
 {
 net=strcat(net, "\n.DC ", paramValue);
 while(paramList)
 {
 paramRecord=car(paramList);
 paramList=cdr(paramList);
 net=strcat(net, " ", nth(1, paramRecord));
 }
 }

 return(net);
}

The component is netlisted, and the result is as follows:

.OP ALL

.DC “X” 1000 10000 1000

After the first iteration, it appears that the name of the variable is quoted. The
parameter formatting function did not take the double quotes out, and ADS specifies
the value is explicitly a string.

Two things could be done. A parameter type mapping function could be specified that
would remove the quotes, or, code could be added directly into the function to remove
the quotes. The second choice has been made in this case, so two new line are added
prior to the net=strcat(net, "\n.DC ", paramValue); line:

if(leftstr(paramValue, 1) == "'")
 paramValue=midstr(paramValue, 1, strlen(paramValue)-2);

A DC component is placed, and a netlist is created. Now the output is as follows:
6-20 Creating Component Definitions

.OP ALL

.DC X 1000 10000 1000

This is what s needed. It is now possible to run a basic DC simulation in both ADS
and HSpice by placing a DC component.

Similar setups could be done for the AC component and the Tran component. Other
than DC, AC, and Transient simulation, ADS and HSpice don’t have much in
common in the way of simulation. These three simulations should be enough to drive
model comparison simulations.

Components that Access Netlist Fragment Subcircuits

A netlist fragment is a piece of a netlist that is meant to be reused in other netlists by
using library statements or include statements. These can either be models, or they
can be complete subcircuits, or even complete subcircuit hierarchies.

If you have a component that is hierarchically defined in ADS, it is a subcircuit and
uses cnexSubcircuitInstance. If your component is going to access another subcircuit,
and it is not hierarchically defined in ADS, but the instance line still needs to be
output as a subcircuit reference, you still need to use the function
cnexSubcircuitInstance. If you use cnexNetlistInstance, assuming that because your
subcircuit in the fragment is now a new primitive, like it is in ADS, you will not get
the correct HSpice format.

For HSpice, a subcircuit is referenced by an instance by using a line with the
following format:

Xyyy n1 <n2 n3 ...> subnam <parnam= val ...> <M= val>

A new component, test4 is created. This component access one of the following two
pre-made netlist fragments that has the subcircuit headers:

.subckt cktA pos neg Width=2u Lenth=10u

.subckt cktB pos net Width=2u Length=10u

These represent the resistors of two different types. The user chooses between the
two resistors by selecting from a pull-down menu on a parameter called circuit. This
is the type of setup used if you have a high impedance and a low impedance resistor
and have parasitic subnetworks to represent each of the two types of resistor where
the parasitic values cannot be simply calculated based on parameters that are passed
into the circuit.
Creating Component Definitions 6-21

Hspice Netlister Example
You can make a component definition for a user defined device. Because the default
behavior will not be correct in this case, a new file, test4.cnex, is made in the HSpice
component directory.

Since the netlist fragments are subcircuits, the Netlist_Function is set up to be
cnexSubcircuitInstance.

The terminal order can be determined from the subcircuit headers. It must be pos
neg.

You want the subcircuit name, Component_Name field, to be picked up from the value
that is specified in the circuit parameter. Instead of putting an explicit name, the
Component_Name field is set to @circuit, which tells the netlisting code to use the
value of the circuit parameter.

Because circuit is being used as the component name, it does not need to be output as
a parameter. The only two parameters are Width and Length. For this particular
subcircuit, the parameter names in the SPICE file are the same as the parameter
names of the component. No name mapping is required. The final component
definition file becomes the following:

Netlist_Function = cnexSubcircuitInstance
Component_Name = @circuit
Terminal_Order = POS NEG
Parameters = Width Length

Two instances of test4 are placed in a new circuit, test5. Once instance has circuit set
to cktA and the other has circuit set to cktB. A netlist is generated and the output
lines are the following:

xx2 _net28 _net27 cktb Width=2uM Length=10uM
xx1 _net28 _net27 ckta Width=2uM Length=10uM

These two instance lines match the needed output for the subcircuit headers that
were shown.

Verifying the Netlist
Verifying the netlist comprises of making sure that the subcircuit definitions are
output correctly and that each instance is output correctly.

For the HSpice simulator ready netlists, to back annotating the DC results to the
ADS schematic, you can name all of the nodes in the schematic, which will force ADS
to store the DC results into a dataset file. You can then view the results of the ADS
simulation in the Data Display Server, and the HSpice results in their results viewer.
6-22 Verifying the Netlist

If you have a schematic in another tool that can drive HSpice, you can create a netlist
from that tool, and a netlist from ADS, and view simulation results from both of the
netlists.

Component Verification

Here is a check list to follow that will allow you to verify any component:

1. Determine the ADS component type.

2. Determine the ADS terminal order.

3. Find out the ADS component parameters.

4. Determine the format needed by the new tool. For example, to make a capacitor
in HSpice, the format is the following:

Cxxx n1 n2 < mname> <C=>capacitance <<TC1=> val> <<TC2=>val> <SCALE=val>
<IC= val> <M=val> <W=val> <L= val> <DTEMP=val>.

5. Create a component definition for the ADS component.

6. Place one instance of the component in a schematic. Make sure to set all of the
parameters so they have values.

This will guarantee that parameters that are supposed to be netlisted are
netlisted, and that parameters that aren’t supposed to be netlisted are not.

7. Create a netlist. Make sure to set the checkbox so that the netlist will be shown
after netlisting is finished.

8. Compare the instance line that was output to the format line that you
determined was needed.

If they match, you are finished. If they do not match, determine if it is because
you need a value mapping function, or if you mis-configured something. Also,
consider whether your format may need to have configuration variables or the
instance function itself changed.
Verifying the Netlist 6-23

Hspice Netlister Example
6-24 Verifying the Netlist

Appendix A: Front End Flow Functions
This appendix contains a listing of the default Front End Flow functions. Every entry
has a description of the function, its arguments, and its return valued. You can
override any of these functions unless specifically noted. But it is critical that any
function that is overridden must have the same argument list and the same return
value name.

Instance Netlist Exporting Functions
These functions are generic functions that can format an instance for a netlist. If you
are using a tool other than Dracula, Calibre, or Assura, you may need to override
them in order to support your tool. All of these functions are provided in source form
in the file cnexNetlistFunctions.ael.

cnexGlobalNodeInstance

This function reads an ADS global node instance and returns a string with the
appropriate syntax for a global node statement.

Syntax

cnexGlobalNodeInstance(instH, instRecord);

Where

instH is the handle to the instance

instRecord is a list of lists read from the component definition file

cnexVariableInstance

This function reads an ADS VAR component instance, and returns a string with the
appropriate variable definition format.

Syntax

cnexVariableInstance(instH, instRecord);

Where

instH is the handle to the instance

instRecord is a list of lists read from the component definition file
A-1

Front End Flow Functions
cnexUnknownInstance

Do not override this function. Any time an instance is determined to be a primitive,
and it does not have a component definition file for the current tool, this function will
be called automatically. This function will output a warning to the log file, and a
comment line into the netlist file. If you have a component that calls this function, it
means you want to ignore the component. By using this function, the netlist can still
be created without requiring extra work to be done.

Syntax

cnexUnknownInstance(instH, instRecord);

Where

instHHandle to the instance

instRecordList of lists read from the component definition file

cnexIgnoreInstance

The cnexIgnoreInstance function bypasses the processing of an instance. For
components that are attached in a schematic, this results in an open circuit at the
point where the component is connected. Use the cnexIgnoreInstance function with
detached components, such as model components, and with parasitic components
that are placed in parallel with other components, such as parasitic capacitors. The
return value is an empty string.

Syntax

cnexIgnoreInstance(instH, instRecord);

Where

instH is the handle to the instance

instRecord is a list of lists read from the component definition file

cnexShortInstance

The cnexShortInstance function shorts all of the nodes of a device together into a
single node. These nodes are collected into a global list which is used to replace all of
the nodes when the instances that are not shorted are finally output. Use this
function to short circuit transmission line components, such as the mlin or tee, or to
short circuit parasitic devices that are connected in series. This function is called
internally and should not be overridden. The return value is an empty string.
A-2

Syntax

cnexShortInstance(instH, instRecord);

Where

instH is the handle to the instance

instRecord is a list of lists read from the component definition file

cnexShortMultiportInstance

The cnexShortMultiportInstance functions shorts pairs of pins on a device together
into a single node. These nodes are collected into a global list which is used to replace
shorted node names when other instances are output. Use this function to short
circuit multi-port transmission lines, such as the four port coaxial cable. This
function is called internally and should not be overridden. The return value is an
empty string.

Syntax

cnexShortMultiportInstance(instH, instRecord);

Where

instH is the handle to the instance

instRecord is a list of lists read from the component definition file

cnexNetlistInstance

This is the generic function for outputting instances as primitives. If you use a tool
other than Dracula, Calibre, or Assura, you must override this function so that it
supplies the correct output for your tool. The return value is a string that represents
a component for a particular tool.

Syntax

cnexNetlistInstance(instH, instRecord);

Where

instH is the handle to the instance

instRecord is a list of lists read from the component definition file
A-3

Front End Flow Functions
cnexSubcircuitInstance

This is the generic function for outputting instances that represent hierarchical
subcircuits. If you use a tool other than Dracula, Calibre, or Assura, you must
override this function so that it supplies the correct output for your tool. The return
value is a string that represents a subcircuit call for a particular tool.

Syntax

cnexSubcircuitInstance(instH, instRecord);

Where

instH is the handle to the instance

instRecord is a list of lists read from the component definition file

Subcircuit Header Functions
These functions output the header for a hierarchical subcircuit in a netlist.If you use
a tool other than Dracula, Calibre, or Assura, you must override these functions so
that they supply the correct output for your tool. Both functions are provided in
source form in the file cnexNetlistFunctions.ael.

cnexOutputSubcircuitHeader

This function formats the header for a subcircuit. The default function will return an
Hspice syntax subcircuit statement. The function also outputs the line to the netlist,
so it is not necessary to also call the cnexExportWriteToNetlist function. If you use a
tool other than Dracula, Calibre, or Assura, you must override this function so that it
supplies the correct output for your tool.

Syntax

cnexOutputSubcircuitHeader(designName, dsnH);

Where

designName is a string containing the design name

dsnH is the handle of the design

Example

decl dsnH=db_get_design(“myDesign”);
decl net=cnexOutputSubcircuitHeader(“myDesign”, dsnH);
fputs(stderr, net);
A-4

.subckt myDesign in out

cnexOutputTopcellHeader

This function formats the header for the top cell circuit. The default function will
return an HSpice syntax subcircuit statement which is ready to use with Dracula. If
you use a tool other than Dracula, calibre, or Assura, you must override this function
so that it supplies the correct output for your tool.

Syntax

cnexOutputTopcellHeader(designName, dsnH);

Where

designName is a string containing the top cell design name

dsnH is the handle to the top cell

Subcircuit Footer Functions
These functions are responsible for writing out hierarchical subcircuit footers, for
example, the .ends statement in a spice netlist. If you use a tool other than Dracula,
calibre, or Assura, you must override these functions so that they supply the correct
output for your tool. Both functions are provided in source form in the file
cnexNetlistFunctions.ael.

cnexOutputSubcircuitFooter

This function formats the footer for a subcircuit. The default function will return an
HSpice syntax subcircuit .ends directive, which signals the end of the subcircuit. If
you use a tool other than Dracula, calibre, or Assura, you must override this function
so that it supplies the correct output for your tool.

Syntax

cnexOutputTopcellFooter(designName, dsnH);

Where

designName is a string containing the top cell design name

dsnH is the handle to the top cell
A-5

Front End Flow Functions
Example

decl dsnH=db_get_design(“myDesign”);
decl net=cnexOutputSubcircuitFooter(“myDesign”, dsnH);
fputs(stderr, net);

.ends myDesign

cnexOutputTopcellFooter

This function formats the footer for the top cell circuit. The default function will
return an HSpice syntax subcircuit end directive, which is appropriate for Dracula. If
you use a tool other than Dracula, calibre, or Assura, you must override this function
so that it supplies the correct output for your tool.

Syntax

cnexOutputTopcellFooter(designName, dsnH);

Where

designName is a string containing the top cell design name

dsnH is the handle to the top cell

Netlist Header Function

cnexExportNetlistHeader

This function returns a string that outputs the first lines in the netlist file. The string
can contain new line characters to make it span more than a single line of output.
This function is always the first function called when generating a netlist. The
default function will output global nodes, option statements, comments, and include
files.

Syntax

cnexExportNetlistHeader(designName, repH);

Where

designName is a string containing the top cell design name

repH is the handle to the schematic representation of the top cell
A-6

Netlist Footer Function

cnexExportNetlistFooter

This function outputs the ending lines of the netlist. The default function will output
an HSpice .end directive at the end of the netlist.

Syntax

cnexExportNetlistFooter(designName, repH);

Where

designName is a string containing the top cell design name

repH is the handle to the schematic representation of the top cell

Circuit Output Functions

cnexOutputSubcircuit

This is a wrapper function that makes all of the calls necessary to completely output
a subcircuit. The function calls cnexExportSubcircuitHeader, cnexOutputCircuitData,
and cnexExportSubcircuitFooter. The function will always return a NULL.

Syntax

cnexOutputSubcircuit(designName);

Where

designName is a string containing the name of the subcircuit

cnexOutputCircuitData

This function examines all of the instances in a schematic representation and calls
the appropriate output functions for each of the instances. The function has no return
value.

Syntax

cnexOutputSubcircuit(designName);

Where

repH is a handle to the schematic that will be output
A-7

Front End Flow Functions
topLevel is a boolean value designating whether the current representation is
the top level circuit or not

Parameter Formatting Functions
These functions reformat a parameters value so it can be output into a netlist. These
functions are called internally, so it is critical that the functions return the correct
values.

cnexExportFormatValue

This function takes a string value with valid ADS metric or english scalars and units,
and returns a value that has a number with english or metric scalars appropriate for
the netlist tool. The function uses replacement values from the configuration file
found in the path location specified in the variable SCALAR_UNIT_MAPPING.

Syntax

cnexExportFormatValue(val);

Where

val is a parameter value that needs to be formatted for a particular tool.

Example

cnexExportFormatValue(“900 MHz”);

returns 900meg

cnexExportScalarExpand

This function takes a string value that represents a number in metric or english
scalars and converts it to a scientific notation string.

Syntax

cnexExportScalarExpand(val);

Where

val is a parameter value that is to be converted to scientific notation

Example

cnexExportScalarExpand(“1mOhm”);

returns 1e-3
A-8

Global Variable Functions

cnexExportReadGlobals

This function is called prior to exporting a Front End Flow netlist. It reads the
CNEX_config file for the current tool. This function definition is in cnexGlobals.ael,
and you can override if it is necessary to write your own variables into a
CNEX_config configuration file for a custom tool. It is not necessary to call this
function in any user defined code.

Syntax

cnexExportReadGlobals();

cnexExportClearGlobals

This function is called prior to outputting a netlist and directly after a netlist is
created. The function sets all lists and string values that have been defined back to
their default values or to NULL to conserve memory. This function is in
cnexGlobals.ael. Override this function if you add your own new global variables.

Syntax

cnexExportClearGloblas();

Option Functions

cnexNetlistDialogOptions_cb

The function creates a dialog box that contains the options that have been set up for
your tool. You must override the cnexNetlistDialogOptions_cb function for your tool if
you wish to allow the user to graphically specify option settings for a netlist. This
function is provided in source form in the file cnexOptions.ael. For more information
on how to set this function up, see Chapter 5, Setting up GUI Options.

Syntax

cnexNetlistDialogOptions_cb(buttonH, mainDlgH, winInst);

Where

buttonH is the handle to the button that was clicked to initiate the function call

mainDlgH is the handle to the dialog that initiated the function call
A-9

Front End Flow Functions
winInst is the handle to the window that the dialog belongs to

Core Functions
The core functions should not be overridden. These functions access the database
directly. They also provide extra intelligence that modifies the return values from the
database to include effects from power pins, instance iteration, and bus vector
notation. These functions should be called in your own functions.

Note If you do find that you must override one of these functions, you must contact
Agilent Technologies directly to request the source code. The source code for these
functions is not provided in any of the AEL functions distributed with Front End
Flow.

app_add_cnex_menus

Add this function to USER_MENU_FUNCTION_LIST in order to have the Front
End Flow menu show up on the tools menu of a schematic window. It should not be
called directly. It is meant to be called when a window is being created.

Syntax

app_add_cnex_menus (winTempId);

Where

winTempId is an enumerated integer that designates the type of window to add
the menu to. This function will only work if winTempId is
SCHEMATIC_WINDOW

cnex_bound

The cnex_bound function uses the on_error function to redirect errors that result
from using an undeclared variable or an undeclared function. The redirected error
function will return NULL if an attempt to reference an undeclared function or
variable is made. If the variable or function exists, the value of the variable or
function is returned. This function can be used to see if functions that were declared
in other ADS modules have been loaded prior to using them. It can also verify if
global variables declared in other ADS modules have been defined prior to using
them.
A-10

Syntax

cnex_bound(var);

Where

var is the string name of the variable or function to check

Example

decl x=1;
cnex_bound(“x”);Returns 1
cnex_bound(“y”);Returns NULL

cnexExpandBusNotation

This is a general purpose function that returns an expanded list of all of the items for
bus notations. This function can handle any notation that Cadence DFII bus vector
notation supports. Therefore, this function is appropriate for any instance, pin, or
wire that uses bus notation. That means it can expand more than ADS will allow.
However, the function works with the smaller ADS environment.

Syntax

cnexExpandBusNotation(busString);

Where

Node Name Node List

a a

a,b a,b

<*2>a a,a

<*2>a,<*2>b a,a,b,b

<*2>(a,b) a,b,a,b

a<0> a<0>

a<0,1,2> a<0>,a<1>,a<2>

a<0:1> a<0>,a<1>

a<0:1>,b a<0>,a<1>,b

a<0:2:2> a<0>,a<2>

a<0:1*2> a<0>,a<0>,a<1>,a<1>

a<(0:1)*2> a<0>,a<1>,a<0>,a<1>
A-11

Front End Flow Functions
busString is the bus vector string that is to be expanded

Example

cnexExpandBusNotation(“a,b”);Returns list(“a”,”b”)
cnexExpandBusNotation(“a<0:2>”);Returns list(“a<0>”,”a<1>”,”a<2>”)

cnexExport

This function generates a netlist. The Front End Flow netlist dialog box calls this
function directly, and allows you to set global variables prior to calling this function.
If you wish to make your own non-interactive functions that will create non-ADS
netlists, this function should be called.

Syntax

cnexExport(cnexType, designName, netlistName, logName);

Where

cnexType is the name of the tool to generate the netlist for

designName is the name of the top cell design to export

netlistName is the full path name of the netlist to produce

logName is the full path name of a log file for error and warning messages

cnexExportAsciiCode

This function returns an ASCII number for a character. Use it to replace illegal
characters with a numeric code in the function cnexExportFixIllegalChars. If a
character is not found, the code 45 is returned.

Syntax

cnexExportAsciiCode(c);

Where

c is the character to get the ASCII code for

Example

cnexExportAsciiCode(“a”);Returns 65

cnexExportFindAllSubcircuits

This is a recursive function examines the hierarchy of the schematic representation
that was passed to it and looks for all instances that have hierarchy. The function
A-12

returns a list of design names that are subcircuits. The function additionally checks
the node names of each representation and adds any node that ends in the character
! to the global node list.

Syntax

cnexExportFindAllSubcircuits(repH);

Where

repH is the schematic representation to search for hierarchical components

cnexExportFixIllegalChars

This function examines a string value and replaces all of illegal characters with the
appropriate ASCII code. The ASCII code is prefixed and suffixed with an underscore
character to designate that it was an illegal character code and not simply a number
that was part of the name. The function returns the fixed string value.

Syntax

cnexExportFixIllegalChars(val, charList);

Where

val is the string value that needs to have illegal characters replaced

charList is the string of characters that are illegal

Example

cnexExportFixIllegalChars(“abc”, “b”);Returns “a_66_c”

cnexExportItemdefParmAttribute

This routine retrieves the attributes associated with a parameter in an ADS item
definition. It returns the integer value of the attribute.

Syntax

cnexExportItemdefParmAttribute(parmDefH, parmName);

Where

parmDefH is the handle to the head of the item definition parameter list

parmName is the name of the parameter to retrieve an attribute for
A-13

Front End Flow Functions
cnexExportWriteToLog

This function writes the text passed in to it out to the log file that was specified in the
cnexExport function call. The text string passed in to the function may contain new
line characters to force output to be more than a single line.

Syntax

cnexExportWriteToLog(text);

Where

text is the text to output to the log file

cnexExportWriteToNetlist

This function writes the text string passed to it out to the netlist file that was
specified in the cnexExport function call. The text string is processed so that it does
not exceed the maximum line length and has the appropriate continuation characters
added at the start or end of the current line.

Syntax

cnexExportWriteToNetlist(net);

Where

net is the string to output to the netlist file

cnexGetComponentName

This function gets the component name appropriate for the current tool. The instance
component definition is consulted to see if a specific component name has been
defined. If it has, that component name will be used.

Otherwise, the function checks to see if the component name field is empty or is a
subcircuit, and if the function name for output is cnexSubcircuitInstance. If the
component is a subcircuit, the ADS component name is used. If component name is
empty and the function is not cnexSubcircuitInstance, the component name is
returned as an empty string.

Syntax

cnexGetComponentName(instH, instRecord);

Where

instH is the instance handle of the component
A-14

instRecord is the component definition record for the instance

cnexGetInstanceName

This function returns the instance name to use for the current instance handle. In
cases where a component is being iterated because of bus notation, the instance name
is returned with the appropriate iteration counter.

Syntax

cnexGetInstanceName(instH);

Where

instH is the instance handle of the instance to get the instance name from

cnexGetInstanceRecord

This function searches the component definition path and reads in the appropriate
component definition file for the specified instance or design name. If the instance
handle is specified, the design name is retrieved from the instance handle. If a
specific definition directory is specified, and that directory contains a definition for
the component, that definition is read instead of searching the component definition
path. If the definition directory is specified, and definition exists in that directory, the
component path will be searched instead.

If no component definition record can be found for the instance, a default record is
created. The default record checks to see if the component is a subcircuit definition. If
it is, the default definition is set up to output a subcircuit record, using
cnexSubcircuitInstance. If the component is not a subcircuit, it is set up to use
cnexUnknownInstance instead.

Syntax

cnexGetInstanceRecord(instH, [dsnName, definitionDir]);

Where

instH is the current instance to get the definition record for

dsnName is the design name to get a record for if instH is NULL

definitionDir is an optional directory to read the component definition file from
A-15

Front End Flow Functions
cnexGetInstances

This function retrieves a list of the instances for a representation. The return value is
a list of instance handles for the schematic representation.

Syntax

cnexGetInstances(repH);

Where

repH is the schematic representation to get the instance list for

cnexGetParameterList

This function retrieves the parameter list from an instance record.

Syntax

cnexGetParameterList(instRecord);

Where

instRecord is a list that represents the data from the component definition file

cnexGetParameterValues

This function retrieves the values set for an instance for all of the parameters that
are in the instance record parameter list. The list records are the mapped name, the
parameter value, and the original parameter name. The function returns a list of
lists.

Syntax

cnexGetParameterValues(instH, instRecord);

Where

instH is the instance handle of the current instance

instRecord is a list that represents the data from the component definition file

cnexGetPinConnections

This function looks for the instance handle and the terminal order and returns a list
of nodes for connectivity with the instance. The list is ordered to match the terminal
order of the instance. This function takes into account bus vector notation and return
node names that have the proper bus indices on them.
A-16

Syntax

cnexGetPinConnections(instH, instRecord);

Where

instH is the instance handle of the current instance

instRecord is a list that represents the data from the component definition file

cnexGetTerminalOrder

This function returns a list that represents the instance terminal order. The order is
determined by looking at the termOrder field of the instRecord. If the termOrder field
is not set, the instance symbol is consulted, and the terminal order is determined by
reading the pin number from each of the symbol pins. This function also sets up the
global variable cnexInheritedConnectionList based on whether power pins have been
set up on the instance or in the hierarchy of the instance.

Syntax

cnexGetTerminalOrder(instH, instRecord);

Where

instH is the instance handle of the current instance

instRecord is a list that represents the data from the component definition file

cnexGetCustomDir

This function reads the Front End Flow configuration files and returns the value set
for CNEX_CUSTOM_DIR. If the value is not set in a configuration file, it returns
$HPEESOF_DIR/custom/netlist_exp.

Syntax

cnexGetCustomDir();

cnexGetHomeDir

This function reads the Front End Flow configuration files and returns the value set
for CNEX_HOME_DIR. If the value is not set in a configuration file, it returns
$HOME/hpeesof/netlist_exp.

Syntax

cnexGetHomeDir();
A-17

Front End Flow Functions
cnexGetInstallDir

This function reads the Front End Flow configuration files and returns the value set
for CNEX_INSTALL_DIR. If the value is not set in a configuration file, it returns
$HPEESOF_DIR/netlist_exp.

Syntax

cnexGetInstallDir();

cnexGetTool

This function reads the Front End Flow configuration files and returns the value set
for CNEX_TOOL. If the value is not set in a configuration file, it returns dracula.

Syntax

cnexGetTool();

cnexGetToolList

This function reads the configuration files, and retrieves the value of
CNEX_COMPONENT_PATH. It uses that value to search for which tool directories
exist in the current component path. It then returns a list which contains the
available tools for Front End Flow.
A-18

Appendix B: Layered API Functions
This appendix contains an abbreviated list of Layered API functions. The information
in this appendix is provide to help in the creation of option dialogs boxes. The
functions discussed are those used to create the default options dialog box and those
used to generate the Dracula options dialog box.

This appendix also contains a listing of the dialog elements that have been used in
the default options dialog and the Dracula options dialog.

Layered API Functions
The following lists the layered API functions and definitions.

api_dlg_add_callback

This function adds a callback to the dialog object. The function does not return a
value.

Syntax

api_add_callback(itemH, functionName, callbackType, callbackData);

Where

itemH is the handle to the dialog object

functionName is a string designating the name of the callback function

callbackType is an enumerated integer that designates the action that will
cause the callback to be executed

callbackData is a pointer to the AEL data that will be passed as the second
argument to the callback function

Example

api_dlg_add_callback(pbClose, “close_cb”, API_ACTIVATE_CALLBACK, dlgH);

api_dlg_create_dialog

This function creates a custom dialog box according to the specified arguments. The
function returns the handle to the dialog.
B-1

Layered API Functions
Syntax

api_dlg_create_dialog(dlgName, winInst, [resource, value, ...], [itemH,
...]);

Where

dlgName is a string name that designates the unique name of the dialog

winInst is the window instance that the dialog is associated to

resource, value These are integer values that designate properties for the dialog
box. These allow you to set the dialog caption, the modality, etc. The format
specifies the resource type and the value to use for that resource type. You can
specify as many resources as you need.

itemH is a handle to a dialog object that will be displayed as a child object in the
dialog window. You can specify as many child object as needed. Child objects are
created using the command api_dlg_create_item.

api_dlg_create_item

This function creates a new dialog object. The function returns the handle to the child
object.

Syntax

api_dlg_create_item(name, type, [resource, value, ...], [itemH, ...]);

Where

name is the name of the dialog object. This should be a unique name, so that the
handle to the object can be retrieved using the command api_dlg_find_item.

type is an enumerated integer that specifies the type of dialog object will be
created.

resource,value is a set of integers and values that specify properties for the
dialog object. Each dialog object type has a different set of resources that can be
set for it.

itemH is a set of optional dialog objects to place as children in the dialog object,
if the dialog object supports having children. For instance,
API_TABLE_GROUP can have dialog object arguments because it supports
having children.

Example
B-2

pbOkay=api_dlg_create_item(“pbOkay”, API_PUSH_BUTTON_ITEM,
API_RN_CAPTION, “OK”);

api_dlg_find_item

This function retrieves the dialog box object with a specified name from its parent.
The function returns the handle of the dialog object if it is found, otherwise it returns
NULL.

Syntax

api_dlg_find_item(parentH, name);

Where

parentH is the handle to the parent dialog object

name is the name of the dialog object to find

Example

decl pbOkay=api_dlg_find_item(dlgH, “pbOkay”);

api_dlg_get_resources

This function gets the value of a specified dialog object resource. The function does
not return a value.

Syntax

api_dlg_get_resources(itemH, resource, &var);

Where

itemH is the dialog object handle from which to retrieve data

resource is an enumerated integer value that designates the resource value to
retrieve

&var is the address of a variable that has its value assigned to the resource
value

Examples

decl val1;
api_dlg_get_resources(checkH, API_RN_TOGGLE_STATE, &val1);
fputs(stderr, identify_value(val1));Outputs 1 to the terminal window
api_dlg_get_resources(editH, API_RN_VALUE, &val1);
fputs(stderr, identify_value(val1));Outputs “R” to the terminal window
B-3

Layered API Functions
api_dlg_set_resources

This function sets the value of a specified dialog object resource. The function does
not return a value.

Syntax

api_dlg_set_resources(itemH, resource, value);

Where

itemH is the dialog object handle from which to retrieve data

resource is an enumerated integer value that designates the resource value to
retrieve

value is the value to assign to the specified resource of the object

Examples

api_dlg_set_resources(checkH, API_RN_TOGGLE_STATE, TRUE);
api_dlg_set_resources(editH, API_RN_VALUE, “L”);

Layered API Dialog Elements
The following descriptions are the enumerated item types that can be specified in the
api_dlg_create_item function to create a new dialog object. Each description includes
the callbacks that can be assigned to the dialog object and the resources that are
available for the dialog box object.

API_CHECK_BUTTON_ITEM

This is a toggle button item. Each time the user clicks on the object, it will toggle
between on or off.

Callbacks

Called when the user toggles the button:

API_VALUE_CHANGED_CALLBACK

Resources
B-4

API_DROPDOWNLIST_COMBO_ITEM

This dialog box object consists of a single text field which has a pop-up list of
available elements that can be chosen as the value. The text field displays the
currently selected value.

Callbacks

Called when an item is selected by clicking on it in the pop-up dialog box area:

API_LIST_SELECTION_CALLBACK

Called when an item is double clicked in the pop-up dialog box area:

API_LIST_DBLCLK_CALLBACK

Resources

Resource Type Default Description

API_RN_CAPTION string ““ caption

API_RN_MANAGE_FLAG boolean TRUE item is displayed

API_RN_SENSITIVE_FLAG boolean TRUE item is sensitive

API_RN_TOGGLE_STATE boolean FALSE on or off state

API_RN_USE_BITMAP boolean FALSE use bitmap caption

API_RN_UP_BUTTON_BITMAP string ““ off bitmap name

API_RN_DOWN_BUTTON_BITMAP string ““ on bitmap name

Name Type Default Description

API_RN_CAPTION string ““ label

API_RN_MANAGE_FLAG boolean TRUE item is displayed
B-5

Layered API Functions
API_EDIT_TEXT_ITEM

This is a text window for text editing. A caption is displayed above the text editing
area. You can set up the text window to be a single or multi lined editing area.

Callbacks

Called when the edit text item gets the focus:

API_FOCUS_CALLBACK

Called when the edit text item loses the focus:

API_LOSING_FOCUS_CALLBACK

Called when the text of the edit text item is changed:

API_VALUE_CHANGED_CALLBACK

Called when the RETURN key is pressed if the edit text item is a single line edit text
item:

API_ACTIVATE_CALLBACK

Arguments

API_RN_SENSITIVE_FLAG boolean TRUE item is sensitive

API_RN_VISIBLE_ITEM_COUNT int 8 Number of Visible
items in popup
window

API_RN_ITEM_COUNT int 0 Number of items in
the list

API_RN_ITEMS list NULL list of string items

API_RN_SELECTED_INDEXES list list(0) For a multi-selection
list, the list of
selected indexes

API_RN_SELECTED_INDEX int 0 Selected item
number

Name Type Default Description
B-6

API_LABEL_ITEM

A text label or a bitmap image.

Callbacks

None

Resources

Name Type Default Description

API_RN_CAPTION string ““ Label

API_RN_MANAGE_FLAG boolean TRUE item is displayed

API_RN_SENSITIVE_FLAG boolean TRUE item is sensitive

API_RN_EDITABLE boolean TRUE item is editable

API_RN_VALUE string ““ text value

API_RN_EDIT_MODE int API_RV_
SINGLE_
LINE_EDI
T

API_RV_SINGLE_LI
NE_EDIT or
API_RV_MULTI_LIN
E_EDIT

API_RN_COLUMNS int 20 number of columns

API_RN_ROWS int 8 number of rows for
multi-edit item

API_RN_USE_SCROLL_BARS boolean TRUE display a scroll bar on
multi-line edit items.

Name Type Default Description

API_RN_CAPTION string ““ label text

API_RN_MANAGE_FLAG boolean TRUE item is displayed

API_RN_SENSITIVE_FLAG boolean TRUE item is sensitive

API_RN_USE_BITMAP boolean FALSE use a bitmap instead
of text
B-7

Layered API Functions
API_LIST_ITEM

A scrollable list of strings.

Callbacks

Called when the user makes a selection change in the list:

API_LIST_SELECTION_CALLBACK

Called when user double clicks on an item on the list:

API_LIST_DBLCLK_CALLBACK

Called when user scrolls the list so that a new item becomes the first index being
shown:

API_LIST_TOP_INDEX_CHANGED_CALLBACK

Resources

API_RN_UP_BUTTON_BITMAP string ““ Name of the bitmap

API_RN_DOWN_BUTTON_BITMAP string ““ Name of the bitmap
to use if the item is
not sensitive

Name Type Default Description
B-8

API_PUSH_BUTTON_ITEM

Name Type Default Description

API_RN_CAPTION string ““ label

API_RN_SELECTION_POLICY int single Single or multiple
selections,
API_RV_SINGLE_S
ELECTION or
API_RV_MULTIPLE_
SELECTION.

API_RN_MANAGE_FLAG boolean TRUE item is displayed

API_RN_SENSITIVE_FLAG boolean TRUE item is sensitive

API_RN_VISIBLE_ITEM_COUNT int 8 number of visible
items

API_RN_ITEM_COUNT int 0 number of items

API_RN_ITEMS list NULL list of strings

API_RN_SELECTED_INDEXES list list(0) for multi-select list,
list of the selected
items

API_RN_SELECTED_INDEX int 0 selected item

API_RN_SELECTED_ITEM_COUNT int 0 Number of selected
items

API_RN_SELECTED_ITEMS list NULL string list of selected
items

API_RN_VISIBLE_COLUMN_COUNT int 6 number of visible
columns

API_RN_TOP_INDEX int 0 Position of the item
that is the first visible
item in the list

API_RN_SCROLL_BAR_CONFIG int API_RV_
LIST_BO
TH_SCR
BAR

specify if vertical or
horizontal scroll bar
is needed (don’t
change this)
B-9

Layered API Functions
This button can use a text label or a bitmap image. The item is activated when the
user left clicks it.

Callbacks

Called when the button item is activated with the mouse:

API_ACTIVATE_CALLBACK

Called when the left mouse button is down, and the cursor is over the button:

API_LEFT_BUTTON_DOWN_CALLBACK

Called when the left mouse button is released, and the cursor is over the button:

API_LEFT_BUTTON_UP_CALLBACK

Resources

API_TABLE_GROUP

The table item is used to design dialog boxes. The table item is a container that
controls the size and location of the dialog box objects. The item uses an array model
to simplify the arrangement of child objects. The table item also controls formatting
for dialog boxes.

Name Type Default Description

API_RN_CAPTION string ““ button text label

API_RN_MANAGE_FLAG boolean TRUE item is displayed

API_RN_SENSITIVE_FLAG boolean TRUE item is sensitive

API_RN_USE_BITMAP boolean FALSE use a bitmap

API_RN_UP_BUTTON_BITMAP string ““ regular bitmap

API_RN_DOWN_BUTTON_BITMAP string ““ button down bitmap

API_RN_FOCUSED_BUTTON_BITMAP string ““ Button has focus
bitmap

API_RN_DISABLED_BUTTON_BITMAP string ““ Desensitized button
bitmap
B-10

Items inside the table are placed at row and column locations in a variable size array.
Items may span more than one row or column. The array can expand or contract in
size as needed. There are options to control justification and place size restrictions on
rows and columns of items.

The table can contain any number and type of children, including other table items.

Callbacks

None

Resources

Name Type Default Description

API_RN_CAPTION string ““ Title for the table

API_RN_MANAGE_FLAG boolean TRUE table is displayed

API_RN_SENSITIVE_FLAG boolean TRUE table is enabled

API_RN_ROW_SPACING int 2 pixels between rows

API_RN_COLUMN_SPACING int 2 pixels between
columns

API_RN_MARGIN_HEIGHT int 2 top and bottom
margins in pixels

API_RN_MARGIN_WIDTH int 2 left and right margins
in pixels

API_RN_FRAME_VISIBLE boolean FALSE frame visible

API_RN_DEFAULT_OPTIONS int 0 Sets default table
options for children

API_RN_NUM_COLORS int 1 number of rows or
columns, depending
on orientation

API_RN_ORIENTATION int API_RV_
VERTICA
L

API_RV_VERTIVAL
or
API_RV_HORIZONT
AL.

API_RN_EQUALIZE_ROW int FALSE each item in the row
has the same size

API_RN_EQUALIZE_COLUMN int FALSE each item in the
column has the same
size
B-11

Layered API Functions
All child items in the table container will have the following additional resources:

Layered API Table Options
You can or the following enumerations produce justifications and size adjustments for
tables and child objects of tables:

• API_RV_TBL_LEFT

Horizontally left justified

• API_RV_TBL_RIGHT

Horizontally right justified

• API_RV_TBL_TOP

Vertically top justified

API_RN_EQUALIZE_ALL int FALSE All items have the
same size

API_RN_RADIO_BEHAVIOR boolean TRUE If TRUE, all radio
buttons will have the
one of many behavior

Name Type Default Description

API_RN_TBL_ROW_POSITION int API_RV_
TBL_DEF
_ROW

row position of the
child item

API_RN_TBL_COL_POSITION int API_RV_
TBL_DEF
_COL

column position of
the child item

API_RN_TBL_OPTIONS int API_RV_
TBL_DEF
_OPT

see “Layered API
Table Options” on
page B-12

API_RN_TBL_ROW_SPAN int 1 number of rows the
child item spans

API_RN_TBL_COL_SPAN int 1 number of columns
the child item spans

Name Type Default Description
B-12

• API_RV_TBL_BOTTOM

Vertically bottom justified

• API_RV_TBL_LK_WIDTH

Do not expand the item horizontally

• API_RV_TBL_LK_HEIGHT

Do not expand the item vertically

• API_RV_TBL_SM_HEIGHT

Force the column to be the minimum height

• API_RV_TBL_SM_WIDTH

Force the column to be the minimum width

• API_RV_FIX_WIDTH

Equivalent to setting: API_RV_TBL_LK_WIDTH|API_RV_TBL_SM_WIDTH

• API_RV_FIX_HEIGHT

Equivalent to setting:
API_RV_TBL_LK_HEIGHT|API_RV_TBL_SM_HEIGHT

• API_RV_FIX_SIZE

Equivalent to setting: API_RV_FIX_WIDTH|API_RV_FIX_HEIGHT
B-13

Layered API Functions
B-14

Index

A
adding tools, 1-9
ADS

Data Display, 1-3
C
CNEX.cfg, 2-3
CNEX_COMPONENT_PATH, 1-6
CNEX_CUSTOM_DIR, 1-4
CNEX_DESIGN_KIT_AEL_PATH, 1-5
CNEX_DESIGN_KIT_PATH, 1-5
CNEX_EXPORT_FILE_PATH, 1-5
CNEX_HOME_DIR, 1-4
CNEX_INSTALL_DIR, 1-4
CNEX_TOOL, 1-4
command line, 4-5
component definition

parameter type function, 3-1
parameters, 3-8
terminal order, 3-8

component support, 1-7
configuration file descriptions, 2-3
configuration file settings, 1-3
configuration files, 2-1
D
design

environment, 1-3
design tool support, 1-7
design tools

unsupported, 1-7
directory structure, 1-7
F
file locations, 2-1
file settings

configuration, 1-3
files

setting up, 4-1
tool configuration, 2-7

foundry kit include file, 4-2
function

type mapping, 4-4
function definition

saving, 4-10
function prototype, 4-3, 4-9
functions

overriding, 4-8

value maping, 4-2
G
GUI, 3-5
I
include file path, 4-1
installation, 1-1

Complete, 1-2
Custom, 1-3
Typical, 1-2

L
license requirements, 1-1
licenses, 1-1
N
netlist function

using, 4-7
netlist options support, 1-7
netlisting functions

adding, 4-6
placing, 4-8

O
overriding functions, 4-8
P
parameter type function, 3-1
parameters, 3-8
priority override, 2-3
R
requirements

license, 1-1
S
saving

function definition, 4-10
setting up files, 4-1
site wide file, 4-1
support

component, 1-7
design tool, 1-7
netlist options, 1-7

T
terminal order, 3-8
tool configuration files, 2-7
tool support, 1-7
tools

unsupported, 1-7
type mapping function, 4-4

placing, 4-4
Index-1

validating, 4-5
U
unsupported design tools, 1-7
V
value mapping functions, 4-2
Index-2

	Contents
	Chapter 1: Setup
	License Requirements
	Installing Netlist Exporter
	Configuration File Settings
	Design Tool Support
	Front End Flow Directory Structure
	Adding Tools to Front End Flow
	The Need for Adding Tools
	Adding a Tool

	Chapter 2: Configuration Files
	Configuration Files Used with Front End Flow
	Configuration File Locations
	de_sim.cfg
	CNEX.cfg
	<tool>.cfg
	CNEX_config.<tool>

	Configuration File Descriptions
	de_sim.cfg
	CNEX.cfg file

	Tool Configuration Files
	CNEX_config Configuration File

	Chapter 3: Component Definitions
	Component Definition Files
	Component Definition File Variables
	Component Definition File Editing

	Component Definition File Setup with the GUI
	Component Definition Editor Procedure

	Chapter 4: Customizing a Netlister
	Setting Up Automatically Included Files
	The Include File Path

	Adding Value Mapping Functions
	Function Prototype and Example
	Adding the New Netlist Function
	Placing the Type Mapping Function
	Validating a Type Mapping Function

	Adding New Netlist Exporting Functions
	Function Prototype and Example
	Using the New Netlist Function
	Placing a New Netlist Exporting Function

	Overriding Existing Front End Flow API Functions
	Function Prototype
	Subclassing a Function Definition

	Chapter 5: Setting up GUI Options
	Option List Global Variable
	Option List Global Variable for Dracula

	Overriding the cnexNetlistDialogOptions_cb Function
	Function Prototype
	Creating a Dialog Box
	Creating Dialog Box Elements
	Adding Callback Functions to Dialog Elements
	Displaying the Dialog
	Closing the Dialog

	Saving Options to a Configuration File
	Getting the Values of the Dialog Box Elements
	Writing a Value to a Configuration File

	Summary

	Chapter 6: Hspice Netlister Example
	Creating the New Dialect Directories and Files
	Making the Component Directory
	Creating the Source Code Directory
	Creating the HSpice Configuration File

	Modifying the Configuration File as Needed
	Modifying the Netlisting Functions as Needed
	Modifying Instance Functions
	Modifying Header and Footer Functions

	Creating Component Definitions
	Primitive Components
	Components that Access Models
	Model Components
	Simulation Components
	Components that Access Netlist Fragment Subcircuits

	Verifying the Netlist
	Component Verification

	Appendix A: Front End Flow Functions
	Instance Netlist Exporting Functions
	Subcircuit Header Functions
	Subcircuit Footer Functions
	Netlist Header Function
	Netlist Footer Function
	Circuit Output Functions
	Parameter Formatting Functions
	Global Variable Functions
	Option Functions
	cnexNetlistDialogOptions_cb

	Core Functions

	Appendix B: Layered API Functions
	Layered API Functions
	api_dlg_add_callback
	api_dlg_create_dialog
	api_dlg_create_item
	api_dlg_find_item
	api_dlg_get_resources
	api_dlg_set_resources

	Layered API Dialog Elements
	API_CHECK_BUTTON_ITEM
	API_DROPDOWNLIST_COMBO_ITEM
	API_EDIT_TEXT_ITEM
	API_LABEL_ITEM
	API_LIST_ITEM
	API_PUSH_BUTTON_ITEM
	API_TABLE_GROUP

	Layered API Table Options

	Index

